Electron Transfer between Iron Minerals and Quinones: Estimating the Reduction Potential of the Fe(II)-Goethite Surface from AQDS Speciation

Redox reactions at iron mineral surfaces play an important role in controlling biogeochemical processes of natural porous media such as sediments, soils and aquifers, especially in the presence of recurrent variations in redox conditions. Ferrous iron associated with iron mineral phases forms highly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2013-12, Vol.47 (24), p.14161-14168
Hauptverfasser: Orsetti, Silvia, Laskov, Christine, Haderlein, Stefan B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14168
container_issue 24
container_start_page 14161
container_title Environmental science & technology
container_volume 47
creator Orsetti, Silvia
Laskov, Christine
Haderlein, Stefan B
description Redox reactions at iron mineral surfaces play an important role in controlling biogeochemical processes of natural porous media such as sediments, soils and aquifers, especially in the presence of recurrent variations in redox conditions. Ferrous iron associated with iron mineral phases forms highly reactive species and is regarded as a key factor in determining pathways, rates, and extent of chemically and microbially driven electron transfer processes across the iron mineral–water interface. Due to their transient nature and heterogeneity a detailed characterization of such surface bound Fe(II) species in terms of redox potential is still missing. To this end, we used the nonsorbing anthraquinone-2,6-disulfonate (AQDS) as a redox probe and studied the thermodynamics of its redox reactions in heterogeneous iron systems, namely goethite-Fe(II). Our results provide a thermodynamic basis for and are consistent with earlier observations on the ability of AQDS to “shuttle” electrons between microbes and iron oxide minerals. On the basis of equilibrium AQDS speciation we reported for the first time robust reduction potential measurements of reactive iron species present at goethite in aqueous systems (E H,Fe‑GT ≈ −170 mV). Due to the high redox buffer intensity of heterogeneous mixed valent iron systems, this value might be characteristic for many iron-reducing environments in the subsurface at circumneutral pH. Our results corroborate the picture of a dynamic remodelling of Fe(II)/Fe(III) surface sites at goethite in response to oxidation/reduction events. As quinones play an essential role in the electron transport systems of microbes, the proposed method can be considered as a biomimetic approach to determine “effective” biogeochemical reduction potentials in heterogeneous iron systems.
doi_str_mv 10.1021/es403658g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500784098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3169409671</sourcerecordid><originalsourceid>FETCH-LOGICAL-a406t-82aeae2fcf9f6fc4aaa774ccdb52a84c69c9f25954516099cc21a7d391a75ca63</originalsourceid><addsrcrecordid>eNqF0UFvFCEUB3BiNHatHvwChsSYtIdRYICB3pq6rZvUaN2aeJuwzKOlmYUVmBi_gx9a1q6t0YMXSOAHj8cfoeeUvKaE0TeQOWmlUFcP0IwKRhqhBH2IZoTQttGt_LKHnuR8QwhhLVGP0R7jTMpWqRn6MR_BlhQDvkwmZAcJr6B8Awh4sV197wMkM2ZswoAvJh9igHyE57n4tSk-XOFyDfgTDJMtvvqPsUAo3ow4ul9bp3CwWBw2ZxHKtS-Al1NyxgJ2Ka7x8cXbJV5uwHqzPf0UPXK1Fjzbzfvo8-n88uRdc_7hbHFyfN4YTmRpFDNggDnrtJPOcmNM13Frh5VgRnErtdWOCS24oJJobS2jphtaXUdhjWz30cHtvZsUv06QS7_22cI4mgBxyj0VhHSKE63-T7nUjGpKSaUv_6I3cUqhNlJVV01Noq3q8FbZFHNO4PpNql-ZvveU9Ns0-7s0q32xu3FarWG4k7_jq-DVDphszehqhNbne6eI5LWTe2ds_uNV_xT8Ce1rsts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1471919363</pqid></control><display><type>article</type><title>Electron Transfer between Iron Minerals and Quinones: Estimating the Reduction Potential of the Fe(II)-Goethite Surface from AQDS Speciation</title><source>ACS Publications</source><source>MEDLINE</source><creator>Orsetti, Silvia ; Laskov, Christine ; Haderlein, Stefan B</creator><creatorcontrib>Orsetti, Silvia ; Laskov, Christine ; Haderlein, Stefan B</creatorcontrib><description>Redox reactions at iron mineral surfaces play an important role in controlling biogeochemical processes of natural porous media such as sediments, soils and aquifers, especially in the presence of recurrent variations in redox conditions. Ferrous iron associated with iron mineral phases forms highly reactive species and is regarded as a key factor in determining pathways, rates, and extent of chemically and microbially driven electron transfer processes across the iron mineral–water interface. Due to their transient nature and heterogeneity a detailed characterization of such surface bound Fe(II) species in terms of redox potential is still missing. To this end, we used the nonsorbing anthraquinone-2,6-disulfonate (AQDS) as a redox probe and studied the thermodynamics of its redox reactions in heterogeneous iron systems, namely goethite-Fe(II). Our results provide a thermodynamic basis for and are consistent with earlier observations on the ability of AQDS to “shuttle” electrons between microbes and iron oxide minerals. On the basis of equilibrium AQDS speciation we reported for the first time robust reduction potential measurements of reactive iron species present at goethite in aqueous systems (E H,Fe‑GT ≈ −170 mV). Due to the high redox buffer intensity of heterogeneous mixed valent iron systems, this value might be characteristic for many iron-reducing environments in the subsurface at circumneutral pH. Our results corroborate the picture of a dynamic remodelling of Fe(II)/Fe(III) surface sites at goethite in response to oxidation/reduction events. As quinones play an essential role in the electron transport systems of microbes, the proposed method can be considered as a biomimetic approach to determine “effective” biogeochemical reduction potentials in heterogeneous iron systems.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es403658g</identifier><identifier>PMID: 24266388</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Anthraquinones - chemistry ; Biogeochemistry ; Earth sciences ; Earth, ocean, space ; Electron Transport ; Electrons ; Environment ; Environmental science ; Exact sciences and technology ; Geochemistry ; Hydrogen-Ion Concentration ; Iron ; Iron - chemistry ; Iron Compounds - chemistry ; Marine and continental quaternary ; Mineralogy ; Minerals ; Minerals - chemistry ; Organic chemicals ; Oxidation-Reduction ; Quinones - chemistry ; Silicates ; Spectrum Analysis ; Surficial geology ; Suspensions ; Thermodynamics ; Water geochemistry</subject><ispartof>Environmental science &amp; technology, 2013-12, Vol.47 (24), p.14161-14168</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Dec 17, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a406t-82aeae2fcf9f6fc4aaa774ccdb52a84c69c9f25954516099cc21a7d391a75ca63</citedby><cites>FETCH-LOGICAL-a406t-82aeae2fcf9f6fc4aaa774ccdb52a84c69c9f25954516099cc21a7d391a75ca63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es403658g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es403658g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28064078$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24266388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orsetti, Silvia</creatorcontrib><creatorcontrib>Laskov, Christine</creatorcontrib><creatorcontrib>Haderlein, Stefan B</creatorcontrib><title>Electron Transfer between Iron Minerals and Quinones: Estimating the Reduction Potential of the Fe(II)-Goethite Surface from AQDS Speciation</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Redox reactions at iron mineral surfaces play an important role in controlling biogeochemical processes of natural porous media such as sediments, soils and aquifers, especially in the presence of recurrent variations in redox conditions. Ferrous iron associated with iron mineral phases forms highly reactive species and is regarded as a key factor in determining pathways, rates, and extent of chemically and microbially driven electron transfer processes across the iron mineral–water interface. Due to their transient nature and heterogeneity a detailed characterization of such surface bound Fe(II) species in terms of redox potential is still missing. To this end, we used the nonsorbing anthraquinone-2,6-disulfonate (AQDS) as a redox probe and studied the thermodynamics of its redox reactions in heterogeneous iron systems, namely goethite-Fe(II). Our results provide a thermodynamic basis for and are consistent with earlier observations on the ability of AQDS to “shuttle” electrons between microbes and iron oxide minerals. On the basis of equilibrium AQDS speciation we reported for the first time robust reduction potential measurements of reactive iron species present at goethite in aqueous systems (E H,Fe‑GT ≈ −170 mV). Due to the high redox buffer intensity of heterogeneous mixed valent iron systems, this value might be characteristic for many iron-reducing environments in the subsurface at circumneutral pH. Our results corroborate the picture of a dynamic remodelling of Fe(II)/Fe(III) surface sites at goethite in response to oxidation/reduction events. As quinones play an essential role in the electron transport systems of microbes, the proposed method can be considered as a biomimetic approach to determine “effective” biogeochemical reduction potentials in heterogeneous iron systems.</description><subject>Anthraquinones - chemistry</subject><subject>Biogeochemistry</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Electron Transport</subject><subject>Electrons</subject><subject>Environment</subject><subject>Environmental science</subject><subject>Exact sciences and technology</subject><subject>Geochemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Iron</subject><subject>Iron - chemistry</subject><subject>Iron Compounds - chemistry</subject><subject>Marine and continental quaternary</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Minerals - chemistry</subject><subject>Organic chemicals</subject><subject>Oxidation-Reduction</subject><subject>Quinones - chemistry</subject><subject>Silicates</subject><subject>Spectrum Analysis</subject><subject>Surficial geology</subject><subject>Suspensions</subject><subject>Thermodynamics</subject><subject>Water geochemistry</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0UFvFCEUB3BiNHatHvwChsSYtIdRYICB3pq6rZvUaN2aeJuwzKOlmYUVmBi_gx9a1q6t0YMXSOAHj8cfoeeUvKaE0TeQOWmlUFcP0IwKRhqhBH2IZoTQttGt_LKHnuR8QwhhLVGP0R7jTMpWqRn6MR_BlhQDvkwmZAcJr6B8Awh4sV197wMkM2ZswoAvJh9igHyE57n4tSk-XOFyDfgTDJMtvvqPsUAo3ow4ul9bp3CwWBw2ZxHKtS-Al1NyxgJ2Ka7x8cXbJV5uwHqzPf0UPXK1Fjzbzfvo8-n88uRdc_7hbHFyfN4YTmRpFDNggDnrtJPOcmNM13Frh5VgRnErtdWOCS24oJJobS2jphtaXUdhjWz30cHtvZsUv06QS7_22cI4mgBxyj0VhHSKE63-T7nUjGpKSaUv_6I3cUqhNlJVV01Noq3q8FbZFHNO4PpNql-ZvveU9Ns0-7s0q32xu3FarWG4k7_jq-DVDphszehqhNbne6eI5LWTe2ds_uNV_xT8Ce1rsts</recordid><startdate>20131217</startdate><enddate>20131217</enddate><creator>Orsetti, Silvia</creator><creator>Laskov, Christine</creator><creator>Haderlein, Stefan B</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20131217</creationdate><title>Electron Transfer between Iron Minerals and Quinones: Estimating the Reduction Potential of the Fe(II)-Goethite Surface from AQDS Speciation</title><author>Orsetti, Silvia ; Laskov, Christine ; Haderlein, Stefan B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a406t-82aeae2fcf9f6fc4aaa774ccdb52a84c69c9f25954516099cc21a7d391a75ca63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anthraquinones - chemistry</topic><topic>Biogeochemistry</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Electron Transport</topic><topic>Electrons</topic><topic>Environment</topic><topic>Environmental science</topic><topic>Exact sciences and technology</topic><topic>Geochemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Iron</topic><topic>Iron - chemistry</topic><topic>Iron Compounds - chemistry</topic><topic>Marine and continental quaternary</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Minerals - chemistry</topic><topic>Organic chemicals</topic><topic>Oxidation-Reduction</topic><topic>Quinones - chemistry</topic><topic>Silicates</topic><topic>Spectrum Analysis</topic><topic>Surficial geology</topic><topic>Suspensions</topic><topic>Thermodynamics</topic><topic>Water geochemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orsetti, Silvia</creatorcontrib><creatorcontrib>Laskov, Christine</creatorcontrib><creatorcontrib>Haderlein, Stefan B</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orsetti, Silvia</au><au>Laskov, Christine</au><au>Haderlein, Stefan B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron Transfer between Iron Minerals and Quinones: Estimating the Reduction Potential of the Fe(II)-Goethite Surface from AQDS Speciation</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2013-12-17</date><risdate>2013</risdate><volume>47</volume><issue>24</issue><spage>14161</spage><epage>14168</epage><pages>14161-14168</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Redox reactions at iron mineral surfaces play an important role in controlling biogeochemical processes of natural porous media such as sediments, soils and aquifers, especially in the presence of recurrent variations in redox conditions. Ferrous iron associated with iron mineral phases forms highly reactive species and is regarded as a key factor in determining pathways, rates, and extent of chemically and microbially driven electron transfer processes across the iron mineral–water interface. Due to their transient nature and heterogeneity a detailed characterization of such surface bound Fe(II) species in terms of redox potential is still missing. To this end, we used the nonsorbing anthraquinone-2,6-disulfonate (AQDS) as a redox probe and studied the thermodynamics of its redox reactions in heterogeneous iron systems, namely goethite-Fe(II). Our results provide a thermodynamic basis for and are consistent with earlier observations on the ability of AQDS to “shuttle” electrons between microbes and iron oxide minerals. On the basis of equilibrium AQDS speciation we reported for the first time robust reduction potential measurements of reactive iron species present at goethite in aqueous systems (E H,Fe‑GT ≈ −170 mV). Due to the high redox buffer intensity of heterogeneous mixed valent iron systems, this value might be characteristic for many iron-reducing environments in the subsurface at circumneutral pH. Our results corroborate the picture of a dynamic remodelling of Fe(II)/Fe(III) surface sites at goethite in response to oxidation/reduction events. As quinones play an essential role in the electron transport systems of microbes, the proposed method can be considered as a biomimetic approach to determine “effective” biogeochemical reduction potentials in heterogeneous iron systems.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24266388</pmid><doi>10.1021/es403658g</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2013-12, Vol.47 (24), p.14161-14168
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1500784098
source ACS Publications; MEDLINE
subjects Anthraquinones - chemistry
Biogeochemistry
Earth sciences
Earth, ocean, space
Electron Transport
Electrons
Environment
Environmental science
Exact sciences and technology
Geochemistry
Hydrogen-Ion Concentration
Iron
Iron - chemistry
Iron Compounds - chemistry
Marine and continental quaternary
Mineralogy
Minerals
Minerals - chemistry
Organic chemicals
Oxidation-Reduction
Quinones - chemistry
Silicates
Spectrum Analysis
Surficial geology
Suspensions
Thermodynamics
Water geochemistry
title Electron Transfer between Iron Minerals and Quinones: Estimating the Reduction Potential of the Fe(II)-Goethite Surface from AQDS Speciation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A55%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20Transfer%20between%20Iron%20Minerals%20and%20Quinones:%20Estimating%20the%20Reduction%20Potential%20of%20the%20Fe(II)-Goethite%20Surface%20from%20AQDS%20Speciation&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Orsetti,%20Silvia&rft.date=2013-12-17&rft.volume=47&rft.issue=24&rft.spage=14161&rft.epage=14168&rft.pages=14161-14168&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es403658g&rft_dat=%3Cproquest_cross%3E3169409671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1471919363&rft_id=info:pmid/24266388&rfr_iscdi=true