Electron Transfer between Iron Minerals and Quinones: Estimating the Reduction Potential of the Fe(II)-Goethite Surface from AQDS Speciation
Redox reactions at iron mineral surfaces play an important role in controlling biogeochemical processes of natural porous media such as sediments, soils and aquifers, especially in the presence of recurrent variations in redox conditions. Ferrous iron associated with iron mineral phases forms highly...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2013-12, Vol.47 (24), p.14161-14168 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14168 |
---|---|
container_issue | 24 |
container_start_page | 14161 |
container_title | Environmental science & technology |
container_volume | 47 |
creator | Orsetti, Silvia Laskov, Christine Haderlein, Stefan B |
description | Redox reactions at iron mineral surfaces play an important role in controlling biogeochemical processes of natural porous media such as sediments, soils and aquifers, especially in the presence of recurrent variations in redox conditions. Ferrous iron associated with iron mineral phases forms highly reactive species and is regarded as a key factor in determining pathways, rates, and extent of chemically and microbially driven electron transfer processes across the iron mineral–water interface. Due to their transient nature and heterogeneity a detailed characterization of such surface bound Fe(II) species in terms of redox potential is still missing. To this end, we used the nonsorbing anthraquinone-2,6-disulfonate (AQDS) as a redox probe and studied the thermodynamics of its redox reactions in heterogeneous iron systems, namely goethite-Fe(II). Our results provide a thermodynamic basis for and are consistent with earlier observations on the ability of AQDS to “shuttle” electrons between microbes and iron oxide minerals. On the basis of equilibrium AQDS speciation we reported for the first time robust reduction potential measurements of reactive iron species present at goethite in aqueous systems (E H,Fe‑GT ≈ −170 mV). Due to the high redox buffer intensity of heterogeneous mixed valent iron systems, this value might be characteristic for many iron-reducing environments in the subsurface at circumneutral pH. Our results corroborate the picture of a dynamic remodelling of Fe(II)/Fe(III) surface sites at goethite in response to oxidation/reduction events. As quinones play an essential role in the electron transport systems of microbes, the proposed method can be considered as a biomimetic approach to determine “effective” biogeochemical reduction potentials in heterogeneous iron systems. |
doi_str_mv | 10.1021/es403658g |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500784098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3169409671</sourcerecordid><originalsourceid>FETCH-LOGICAL-a406t-82aeae2fcf9f6fc4aaa774ccdb52a84c69c9f25954516099cc21a7d391a75ca63</originalsourceid><addsrcrecordid>eNqF0UFvFCEUB3BiNHatHvwChsSYtIdRYICB3pq6rZvUaN2aeJuwzKOlmYUVmBi_gx9a1q6t0YMXSOAHj8cfoeeUvKaE0TeQOWmlUFcP0IwKRhqhBH2IZoTQttGt_LKHnuR8QwhhLVGP0R7jTMpWqRn6MR_BlhQDvkwmZAcJr6B8Awh4sV197wMkM2ZswoAvJh9igHyE57n4tSk-XOFyDfgTDJMtvvqPsUAo3ow4ul9bp3CwWBw2ZxHKtS-Al1NyxgJ2Ka7x8cXbJV5uwHqzPf0UPXK1Fjzbzfvo8-n88uRdc_7hbHFyfN4YTmRpFDNggDnrtJPOcmNM13Frh5VgRnErtdWOCS24oJJobS2jphtaXUdhjWz30cHtvZsUv06QS7_22cI4mgBxyj0VhHSKE63-T7nUjGpKSaUv_6I3cUqhNlJVV01Noq3q8FbZFHNO4PpNql-ZvveU9Ns0-7s0q32xu3FarWG4k7_jq-DVDphszehqhNbne6eI5LWTe2ds_uNV_xT8Ce1rsts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1471919363</pqid></control><display><type>article</type><title>Electron Transfer between Iron Minerals and Quinones: Estimating the Reduction Potential of the Fe(II)-Goethite Surface from AQDS Speciation</title><source>ACS Publications</source><source>MEDLINE</source><creator>Orsetti, Silvia ; Laskov, Christine ; Haderlein, Stefan B</creator><creatorcontrib>Orsetti, Silvia ; Laskov, Christine ; Haderlein, Stefan B</creatorcontrib><description>Redox reactions at iron mineral surfaces play an important role in controlling biogeochemical processes of natural porous media such as sediments, soils and aquifers, especially in the presence of recurrent variations in redox conditions. Ferrous iron associated with iron mineral phases forms highly reactive species and is regarded as a key factor in determining pathways, rates, and extent of chemically and microbially driven electron transfer processes across the iron mineral–water interface. Due to their transient nature and heterogeneity a detailed characterization of such surface bound Fe(II) species in terms of redox potential is still missing. To this end, we used the nonsorbing anthraquinone-2,6-disulfonate (AQDS) as a redox probe and studied the thermodynamics of its redox reactions in heterogeneous iron systems, namely goethite-Fe(II). Our results provide a thermodynamic basis for and are consistent with earlier observations on the ability of AQDS to “shuttle” electrons between microbes and iron oxide minerals. On the basis of equilibrium AQDS speciation we reported for the first time robust reduction potential measurements of reactive iron species present at goethite in aqueous systems (E H,Fe‑GT ≈ −170 mV). Due to the high redox buffer intensity of heterogeneous mixed valent iron systems, this value might be characteristic for many iron-reducing environments in the subsurface at circumneutral pH. Our results corroborate the picture of a dynamic remodelling of Fe(II)/Fe(III) surface sites at goethite in response to oxidation/reduction events. As quinones play an essential role in the electron transport systems of microbes, the proposed method can be considered as a biomimetic approach to determine “effective” biogeochemical reduction potentials in heterogeneous iron systems.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es403658g</identifier><identifier>PMID: 24266388</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Anthraquinones - chemistry ; Biogeochemistry ; Earth sciences ; Earth, ocean, space ; Electron Transport ; Electrons ; Environment ; Environmental science ; Exact sciences and technology ; Geochemistry ; Hydrogen-Ion Concentration ; Iron ; Iron - chemistry ; Iron Compounds - chemistry ; Marine and continental quaternary ; Mineralogy ; Minerals ; Minerals - chemistry ; Organic chemicals ; Oxidation-Reduction ; Quinones - chemistry ; Silicates ; Spectrum Analysis ; Surficial geology ; Suspensions ; Thermodynamics ; Water geochemistry</subject><ispartof>Environmental science & technology, 2013-12, Vol.47 (24), p.14161-14168</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Dec 17, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a406t-82aeae2fcf9f6fc4aaa774ccdb52a84c69c9f25954516099cc21a7d391a75ca63</citedby><cites>FETCH-LOGICAL-a406t-82aeae2fcf9f6fc4aaa774ccdb52a84c69c9f25954516099cc21a7d391a75ca63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es403658g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es403658g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28064078$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24266388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orsetti, Silvia</creatorcontrib><creatorcontrib>Laskov, Christine</creatorcontrib><creatorcontrib>Haderlein, Stefan B</creatorcontrib><title>Electron Transfer between Iron Minerals and Quinones: Estimating the Reduction Potential of the Fe(II)-Goethite Surface from AQDS Speciation</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Redox reactions at iron mineral surfaces play an important role in controlling biogeochemical processes of natural porous media such as sediments, soils and aquifers, especially in the presence of recurrent variations in redox conditions. Ferrous iron associated with iron mineral phases forms highly reactive species and is regarded as a key factor in determining pathways, rates, and extent of chemically and microbially driven electron transfer processes across the iron mineral–water interface. Due to their transient nature and heterogeneity a detailed characterization of such surface bound Fe(II) species in terms of redox potential is still missing. To this end, we used the nonsorbing anthraquinone-2,6-disulfonate (AQDS) as a redox probe and studied the thermodynamics of its redox reactions in heterogeneous iron systems, namely goethite-Fe(II). Our results provide a thermodynamic basis for and are consistent with earlier observations on the ability of AQDS to “shuttle” electrons between microbes and iron oxide minerals. On the basis of equilibrium AQDS speciation we reported for the first time robust reduction potential measurements of reactive iron species present at goethite in aqueous systems (E H,Fe‑GT ≈ −170 mV). Due to the high redox buffer intensity of heterogeneous mixed valent iron systems, this value might be characteristic for many iron-reducing environments in the subsurface at circumneutral pH. Our results corroborate the picture of a dynamic remodelling of Fe(II)/Fe(III) surface sites at goethite in response to oxidation/reduction events. As quinones play an essential role in the electron transport systems of microbes, the proposed method can be considered as a biomimetic approach to determine “effective” biogeochemical reduction potentials in heterogeneous iron systems.</description><subject>Anthraquinones - chemistry</subject><subject>Biogeochemistry</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Electron Transport</subject><subject>Electrons</subject><subject>Environment</subject><subject>Environmental science</subject><subject>Exact sciences and technology</subject><subject>Geochemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Iron</subject><subject>Iron - chemistry</subject><subject>Iron Compounds - chemistry</subject><subject>Marine and continental quaternary</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Minerals - chemistry</subject><subject>Organic chemicals</subject><subject>Oxidation-Reduction</subject><subject>Quinones - chemistry</subject><subject>Silicates</subject><subject>Spectrum Analysis</subject><subject>Surficial geology</subject><subject>Suspensions</subject><subject>Thermodynamics</subject><subject>Water geochemistry</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0UFvFCEUB3BiNHatHvwChsSYtIdRYICB3pq6rZvUaN2aeJuwzKOlmYUVmBi_gx9a1q6t0YMXSOAHj8cfoeeUvKaE0TeQOWmlUFcP0IwKRhqhBH2IZoTQttGt_LKHnuR8QwhhLVGP0R7jTMpWqRn6MR_BlhQDvkwmZAcJr6B8Awh4sV197wMkM2ZswoAvJh9igHyE57n4tSk-XOFyDfgTDJMtvvqPsUAo3ow4ul9bp3CwWBw2ZxHKtS-Al1NyxgJ2Ka7x8cXbJV5uwHqzPf0UPXK1Fjzbzfvo8-n88uRdc_7hbHFyfN4YTmRpFDNggDnrtJPOcmNM13Frh5VgRnErtdWOCS24oJJobS2jphtaXUdhjWz30cHtvZsUv06QS7_22cI4mgBxyj0VhHSKE63-T7nUjGpKSaUv_6I3cUqhNlJVV01Noq3q8FbZFHNO4PpNql-ZvveU9Ns0-7s0q32xu3FarWG4k7_jq-DVDphszehqhNbne6eI5LWTe2ds_uNV_xT8Ce1rsts</recordid><startdate>20131217</startdate><enddate>20131217</enddate><creator>Orsetti, Silvia</creator><creator>Laskov, Christine</creator><creator>Haderlein, Stefan B</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20131217</creationdate><title>Electron Transfer between Iron Minerals and Quinones: Estimating the Reduction Potential of the Fe(II)-Goethite Surface from AQDS Speciation</title><author>Orsetti, Silvia ; Laskov, Christine ; Haderlein, Stefan B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a406t-82aeae2fcf9f6fc4aaa774ccdb52a84c69c9f25954516099cc21a7d391a75ca63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anthraquinones - chemistry</topic><topic>Biogeochemistry</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Electron Transport</topic><topic>Electrons</topic><topic>Environment</topic><topic>Environmental science</topic><topic>Exact sciences and technology</topic><topic>Geochemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Iron</topic><topic>Iron - chemistry</topic><topic>Iron Compounds - chemistry</topic><topic>Marine and continental quaternary</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Minerals - chemistry</topic><topic>Organic chemicals</topic><topic>Oxidation-Reduction</topic><topic>Quinones - chemistry</topic><topic>Silicates</topic><topic>Spectrum Analysis</topic><topic>Surficial geology</topic><topic>Suspensions</topic><topic>Thermodynamics</topic><topic>Water geochemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orsetti, Silvia</creatorcontrib><creatorcontrib>Laskov, Christine</creatorcontrib><creatorcontrib>Haderlein, Stefan B</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orsetti, Silvia</au><au>Laskov, Christine</au><au>Haderlein, Stefan B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron Transfer between Iron Minerals and Quinones: Estimating the Reduction Potential of the Fe(II)-Goethite Surface from AQDS Speciation</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2013-12-17</date><risdate>2013</risdate><volume>47</volume><issue>24</issue><spage>14161</spage><epage>14168</epage><pages>14161-14168</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Redox reactions at iron mineral surfaces play an important role in controlling biogeochemical processes of natural porous media such as sediments, soils and aquifers, especially in the presence of recurrent variations in redox conditions. Ferrous iron associated with iron mineral phases forms highly reactive species and is regarded as a key factor in determining pathways, rates, and extent of chemically and microbially driven electron transfer processes across the iron mineral–water interface. Due to their transient nature and heterogeneity a detailed characterization of such surface bound Fe(II) species in terms of redox potential is still missing. To this end, we used the nonsorbing anthraquinone-2,6-disulfonate (AQDS) as a redox probe and studied the thermodynamics of its redox reactions in heterogeneous iron systems, namely goethite-Fe(II). Our results provide a thermodynamic basis for and are consistent with earlier observations on the ability of AQDS to “shuttle” electrons between microbes and iron oxide minerals. On the basis of equilibrium AQDS speciation we reported for the first time robust reduction potential measurements of reactive iron species present at goethite in aqueous systems (E H,Fe‑GT ≈ −170 mV). Due to the high redox buffer intensity of heterogeneous mixed valent iron systems, this value might be characteristic for many iron-reducing environments in the subsurface at circumneutral pH. Our results corroborate the picture of a dynamic remodelling of Fe(II)/Fe(III) surface sites at goethite in response to oxidation/reduction events. As quinones play an essential role in the electron transport systems of microbes, the proposed method can be considered as a biomimetic approach to determine “effective” biogeochemical reduction potentials in heterogeneous iron systems.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24266388</pmid><doi>10.1021/es403658g</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2013-12, Vol.47 (24), p.14161-14168 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_1500784098 |
source | ACS Publications; MEDLINE |
subjects | Anthraquinones - chemistry Biogeochemistry Earth sciences Earth, ocean, space Electron Transport Electrons Environment Environmental science Exact sciences and technology Geochemistry Hydrogen-Ion Concentration Iron Iron - chemistry Iron Compounds - chemistry Marine and continental quaternary Mineralogy Minerals Minerals - chemistry Organic chemicals Oxidation-Reduction Quinones - chemistry Silicates Spectrum Analysis Surficial geology Suspensions Thermodynamics Water geochemistry |
title | Electron Transfer between Iron Minerals and Quinones: Estimating the Reduction Potential of the Fe(II)-Goethite Surface from AQDS Speciation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A55%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20Transfer%20between%20Iron%20Minerals%20and%20Quinones:%20Estimating%20the%20Reduction%20Potential%20of%20the%20Fe(II)-Goethite%20Surface%20from%20AQDS%20Speciation&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Orsetti,%20Silvia&rft.date=2013-12-17&rft.volume=47&rft.issue=24&rft.spage=14161&rft.epage=14168&rft.pages=14161-14168&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es403658g&rft_dat=%3Cproquest_cross%3E3169409671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1471919363&rft_id=info:pmid/24266388&rfr_iscdi=true |