Computer-aided diagnosis system: A Bayesian hybrid classification method

Abstract A novel method to classify multi-class biomedical objects is presented. The method is based on a hybrid approach which combines pairwise comparison, Bayesian regression and the k -nearest neighbor technique. It can be applied in a fully automatic way or in a relevance feedback framework. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods and programs in biomedicine 2013-10, Vol.112 (1), p.104-113
Hauptverfasser: CALLE-ALONSO, F, PEREZ, C. J, ARIAS-NICOLAS, J. P, MARTIN, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113
container_issue 1
container_start_page 104
container_title Computer methods and programs in biomedicine
container_volume 112
creator CALLE-ALONSO, F
PEREZ, C. J
ARIAS-NICOLAS, J. P
MARTIN, J
description Abstract A novel method to classify multi-class biomedical objects is presented. The method is based on a hybrid approach which combines pairwise comparison, Bayesian regression and the k -nearest neighbor technique. It can be applied in a fully automatic way or in a relevance feedback framework. In the latter case, the information obtained from both an expert and the automatic classification is iteratively used to improve the results until a certain accuracy level is achieved, then, the learning process is finished and new classifications can be automatically performed. The method has been applied in two biomedical contexts by following the same cross-validation schemes as in the original studies. The first one refers to cancer diagnosis, leading to an accuracy of 77.35% versus 66.37%, originally obtained. The second one considers the diagnosis of pathologies of the vertebral column. The original method achieves accuracies ranging from 76.5% to 96.7%, and from 82.3% to 97.1% in two different cross-validation schemes. Even with no supervision, the proposed method reaches 96.71% and 97.32% in these two cases. By using a supervised framework the achieved accuracy is 97.74%. Furthermore, all abnormal cases were correctly classified.
doi_str_mv 10.1016/j.cmpb.2013.05.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500781860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0169260713001910</els_id><sourcerecordid>1500781860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-bb9c683b367c8c06121f98d6088532f0cca8c5ed15afcc9c16f5aa6952703a5f3</originalsourceid><addsrcrecordid>eNqFkk2LFDEQhoMo7rj6BzxIXwQv3VaSSToREdZBXWHBg3oO6UrazdgfY6pbmH9vtzMqeNBTXZ63KJ63GHvMoeLA9fN9hf2hqQRwWYGqQNg7bMNNLcpaaXWXbRbIlkJDfcEeEO0BQCil77MLIa0U0mw37Ho39od5irn0KcRQhOS_DCMlKuhIU-xfFFfFa3-MlPxQ3B6bnEKBnSdKbUI_pXEo-jjdjuEhu9f6juKj87xkn9---bS7Lm8-vHu_u7opcVtvp7JpLGojG6lrNAiaC95aEzQYo6RoAdEbVDFw5VtEi1y3ynttlahBetXKS_bstPeQx29zpMn1iTB2nR_iOJPjCqA23Gj4P7qVUuitFnZBxQnFPBLl2LpDTr3PR8fBrbLd3q2y3SrbgXLwM_TkvH9u-hh-R37ZXYCnZ8AT-q7NfsBEf7haWyvVeujLExcXcd9TzI4wxQFjSDni5MKY_n3Hq7_i2KVhqaf7Gpfm9uOch6USxx0JB-7j-hbrV3AJwC0H-QNKcLEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1433264629</pqid></control><display><type>article</type><title>Computer-aided diagnosis system: A Bayesian hybrid classification method</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>CALLE-ALONSO, F ; PEREZ, C. J ; ARIAS-NICOLAS, J. P ; MARTIN, J</creator><creatorcontrib>CALLE-ALONSO, F ; PEREZ, C. J ; ARIAS-NICOLAS, J. P ; MARTIN, J</creatorcontrib><description>Abstract A novel method to classify multi-class biomedical objects is presented. The method is based on a hybrid approach which combines pairwise comparison, Bayesian regression and the k -nearest neighbor technique. It can be applied in a fully automatic way or in a relevance feedback framework. In the latter case, the information obtained from both an expert and the automatic classification is iteratively used to improve the results until a certain accuracy level is achieved, then, the learning process is finished and new classifications can be automatically performed. The method has been applied in two biomedical contexts by following the same cross-validation schemes as in the original studies. The first one refers to cancer diagnosis, leading to an accuracy of 77.35% versus 66.37%, originally obtained. The second one considers the diagnosis of pathologies of the vertebral column. The original method achieves accuracies ranging from 76.5% to 96.7%, and from 82.3% to 97.1% in two different cross-validation schemes. Even with no supervision, the proposed method reaches 96.71% and 97.32% in these two cases. By using a supervised framework the achieved accuracy is 97.74%. Furthermore, all abnormal cases were correctly classified.</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/j.cmpb.2013.05.029</identifier><identifier>PMID: 23932384</identifier><language>eng</language><publisher>Kidlington: Elsevier Ireland Ltd</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Bayes Theorem ; Bayesian methodology ; Biological and medical sciences ; Breast Neoplasms - classification ; Breast Neoplasms - diagnosis ; Classification ; Classification - methods ; Computer science; control theory; systems ; Computer-aided diagnosis ; Computerized, statistical medical data processing and models in biomedicine ; Data processing. List processing. Character string processing ; Diagnosis, Computer-Assisted - methods ; Diagnosis, Computer-Assisted - statistics &amp; numerical data ; Exact sciences and technology ; Female ; Humans ; Internal Medicine ; Medical management aid. Diagnosis aid ; Medical sciences ; Memory organisation. Data processing ; Other ; Pattern Recognition, Automated ; Relevance feedback ; Software ; Spinal Diseases - classification ; Spinal Diseases - diagnosis ; Tumors</subject><ispartof>Computer methods and programs in biomedicine, 2013-10, Vol.112 (1), p.104-113</ispartof><rights>Elsevier Ireland Ltd</rights><rights>2013 Elsevier Ireland Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-bb9c683b367c8c06121f98d6088532f0cca8c5ed15afcc9c16f5aa6952703a5f3</citedby><cites>FETCH-LOGICAL-c474t-bb9c683b367c8c06121f98d6088532f0cca8c5ed15afcc9c16f5aa6952703a5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169260713001910$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27699350$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23932384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>CALLE-ALONSO, F</creatorcontrib><creatorcontrib>PEREZ, C. J</creatorcontrib><creatorcontrib>ARIAS-NICOLAS, J. P</creatorcontrib><creatorcontrib>MARTIN, J</creatorcontrib><title>Computer-aided diagnosis system: A Bayesian hybrid classification method</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>Abstract A novel method to classify multi-class biomedical objects is presented. The method is based on a hybrid approach which combines pairwise comparison, Bayesian regression and the k -nearest neighbor technique. It can be applied in a fully automatic way or in a relevance feedback framework. In the latter case, the information obtained from both an expert and the automatic classification is iteratively used to improve the results until a certain accuracy level is achieved, then, the learning process is finished and new classifications can be automatically performed. The method has been applied in two biomedical contexts by following the same cross-validation schemes as in the original studies. The first one refers to cancer diagnosis, leading to an accuracy of 77.35% versus 66.37%, originally obtained. The second one considers the diagnosis of pathologies of the vertebral column. The original method achieves accuracies ranging from 76.5% to 96.7%, and from 82.3% to 97.1% in two different cross-validation schemes. Even with no supervision, the proposed method reaches 96.71% and 97.32% in these two cases. By using a supervised framework the achieved accuracy is 97.74%. Furthermore, all abnormal cases were correctly classified.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Bayes Theorem</subject><subject>Bayesian methodology</subject><subject>Biological and medical sciences</subject><subject>Breast Neoplasms - classification</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Classification</subject><subject>Classification - methods</subject><subject>Computer science; control theory; systems</subject><subject>Computer-aided diagnosis</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Data processing. List processing. Character string processing</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Diagnosis, Computer-Assisted - statistics &amp; numerical data</subject><subject>Exact sciences and technology</subject><subject>Female</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Medical management aid. Diagnosis aid</subject><subject>Medical sciences</subject><subject>Memory organisation. Data processing</subject><subject>Other</subject><subject>Pattern Recognition, Automated</subject><subject>Relevance feedback</subject><subject>Software</subject><subject>Spinal Diseases - classification</subject><subject>Spinal Diseases - diagnosis</subject><subject>Tumors</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk2LFDEQhoMo7rj6BzxIXwQv3VaSSToREdZBXWHBg3oO6UrazdgfY6pbmH9vtzMqeNBTXZ63KJ63GHvMoeLA9fN9hf2hqQRwWYGqQNg7bMNNLcpaaXWXbRbIlkJDfcEeEO0BQCil77MLIa0U0mw37Ho39od5irn0KcRQhOS_DCMlKuhIU-xfFFfFa3-MlPxQ3B6bnEKBnSdKbUI_pXEo-jjdjuEhu9f6juKj87xkn9---bS7Lm8-vHu_u7opcVtvp7JpLGojG6lrNAiaC95aEzQYo6RoAdEbVDFw5VtEi1y3ynttlahBetXKS_bstPeQx29zpMn1iTB2nR_iOJPjCqA23Gj4P7qVUuitFnZBxQnFPBLl2LpDTr3PR8fBrbLd3q2y3SrbgXLwM_TkvH9u-hh-R37ZXYCnZ8AT-q7NfsBEf7haWyvVeujLExcXcd9TzI4wxQFjSDni5MKY_n3Hq7_i2KVhqaf7Gpfm9uOch6USxx0JB-7j-hbrV3AJwC0H-QNKcLEg</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>CALLE-ALONSO, F</creator><creator>PEREZ, C. J</creator><creator>ARIAS-NICOLAS, J. P</creator><creator>MARTIN, J</creator><general>Elsevier Ireland Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20131001</creationdate><title>Computer-aided diagnosis system: A Bayesian hybrid classification method</title><author>CALLE-ALONSO, F ; PEREZ, C. J ; ARIAS-NICOLAS, J. P ; MARTIN, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-bb9c683b367c8c06121f98d6088532f0cca8c5ed15afcc9c16f5aa6952703a5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Bayes Theorem</topic><topic>Bayesian methodology</topic><topic>Biological and medical sciences</topic><topic>Breast Neoplasms - classification</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Classification</topic><topic>Classification - methods</topic><topic>Computer science; control theory; systems</topic><topic>Computer-aided diagnosis</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Data processing. List processing. Character string processing</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Diagnosis, Computer-Assisted - statistics &amp; numerical data</topic><topic>Exact sciences and technology</topic><topic>Female</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Medical management aid. Diagnosis aid</topic><topic>Medical sciences</topic><topic>Memory organisation. Data processing</topic><topic>Other</topic><topic>Pattern Recognition, Automated</topic><topic>Relevance feedback</topic><topic>Software</topic><topic>Spinal Diseases - classification</topic><topic>Spinal Diseases - diagnosis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CALLE-ALONSO, F</creatorcontrib><creatorcontrib>PEREZ, C. J</creatorcontrib><creatorcontrib>ARIAS-NICOLAS, J. P</creatorcontrib><creatorcontrib>MARTIN, J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CALLE-ALONSO, F</au><au>PEREZ, C. J</au><au>ARIAS-NICOLAS, J. P</au><au>MARTIN, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer-aided diagnosis system: A Bayesian hybrid classification method</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>112</volume><issue>1</issue><spage>104</spage><epage>113</epage><pages>104-113</pages><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>Abstract A novel method to classify multi-class biomedical objects is presented. The method is based on a hybrid approach which combines pairwise comparison, Bayesian regression and the k -nearest neighbor technique. It can be applied in a fully automatic way or in a relevance feedback framework. In the latter case, the information obtained from both an expert and the automatic classification is iteratively used to improve the results until a certain accuracy level is achieved, then, the learning process is finished and new classifications can be automatically performed. The method has been applied in two biomedical contexts by following the same cross-validation schemes as in the original studies. The first one refers to cancer diagnosis, leading to an accuracy of 77.35% versus 66.37%, originally obtained. The second one considers the diagnosis of pathologies of the vertebral column. The original method achieves accuracies ranging from 76.5% to 96.7%, and from 82.3% to 97.1% in two different cross-validation schemes. Even with no supervision, the proposed method reaches 96.71% and 97.32% in these two cases. By using a supervised framework the achieved accuracy is 97.74%. Furthermore, all abnormal cases were correctly classified.</abstract><cop>Kidlington</cop><pub>Elsevier Ireland Ltd</pub><pmid>23932384</pmid><doi>10.1016/j.cmpb.2013.05.029</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-2607
ispartof Computer methods and programs in biomedicine, 2013-10, Vol.112 (1), p.104-113
issn 0169-2607
1872-7565
language eng
recordid cdi_proquest_miscellaneous_1500781860
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Applied sciences
Artificial Intelligence
Bayes Theorem
Bayesian methodology
Biological and medical sciences
Breast Neoplasms - classification
Breast Neoplasms - diagnosis
Classification
Classification - methods
Computer science
control theory
systems
Computer-aided diagnosis
Computerized, statistical medical data processing and models in biomedicine
Data processing. List processing. Character string processing
Diagnosis, Computer-Assisted - methods
Diagnosis, Computer-Assisted - statistics & numerical data
Exact sciences and technology
Female
Humans
Internal Medicine
Medical management aid. Diagnosis aid
Medical sciences
Memory organisation. Data processing
Other
Pattern Recognition, Automated
Relevance feedback
Software
Spinal Diseases - classification
Spinal Diseases - diagnosis
Tumors
title Computer-aided diagnosis system: A Bayesian hybrid classification method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A46%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer-aided%20diagnosis%20system:%20A%20Bayesian%20hybrid%20classification%20method&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=CALLE-ALONSO,%20F&rft.date=2013-10-01&rft.volume=112&rft.issue=1&rft.spage=104&rft.epage=113&rft.pages=104-113&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/j.cmpb.2013.05.029&rft_dat=%3Cproquest_cross%3E1500781860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1433264629&rft_id=info:pmid/23932384&rft_els_id=1_s2_0_S0169260713001910&rfr_iscdi=true