Computer-aided diagnosis system: A Bayesian hybrid classification method
Abstract A novel method to classify multi-class biomedical objects is presented. The method is based on a hybrid approach which combines pairwise comparison, Bayesian regression and the k -nearest neighbor technique. It can be applied in a fully automatic way or in a relevance feedback framework. In...
Gespeichert in:
Veröffentlicht in: | Computer methods and programs in biomedicine 2013-10, Vol.112 (1), p.104-113 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113 |
---|---|
container_issue | 1 |
container_start_page | 104 |
container_title | Computer methods and programs in biomedicine |
container_volume | 112 |
creator | CALLE-ALONSO, F PEREZ, C. J ARIAS-NICOLAS, J. P MARTIN, J |
description | Abstract A novel method to classify multi-class biomedical objects is presented. The method is based on a hybrid approach which combines pairwise comparison, Bayesian regression and the k -nearest neighbor technique. It can be applied in a fully automatic way or in a relevance feedback framework. In the latter case, the information obtained from both an expert and the automatic classification is iteratively used to improve the results until a certain accuracy level is achieved, then, the learning process is finished and new classifications can be automatically performed. The method has been applied in two biomedical contexts by following the same cross-validation schemes as in the original studies. The first one refers to cancer diagnosis, leading to an accuracy of 77.35% versus 66.37%, originally obtained. The second one considers the diagnosis of pathologies of the vertebral column. The original method achieves accuracies ranging from 76.5% to 96.7%, and from 82.3% to 97.1% in two different cross-validation schemes. Even with no supervision, the proposed method reaches 96.71% and 97.32% in these two cases. By using a supervised framework the achieved accuracy is 97.74%. Furthermore, all abnormal cases were correctly classified. |
doi_str_mv | 10.1016/j.cmpb.2013.05.029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500781860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0169260713001910</els_id><sourcerecordid>1500781860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-bb9c683b367c8c06121f98d6088532f0cca8c5ed15afcc9c16f5aa6952703a5f3</originalsourceid><addsrcrecordid>eNqFkk2LFDEQhoMo7rj6BzxIXwQv3VaSSToREdZBXWHBg3oO6UrazdgfY6pbmH9vtzMqeNBTXZ63KJ63GHvMoeLA9fN9hf2hqQRwWYGqQNg7bMNNLcpaaXWXbRbIlkJDfcEeEO0BQCil77MLIa0U0mw37Ho39od5irn0KcRQhOS_DCMlKuhIU-xfFFfFa3-MlPxQ3B6bnEKBnSdKbUI_pXEo-jjdjuEhu9f6juKj87xkn9---bS7Lm8-vHu_u7opcVtvp7JpLGojG6lrNAiaC95aEzQYo6RoAdEbVDFw5VtEi1y3ynttlahBetXKS_bstPeQx29zpMn1iTB2nR_iOJPjCqA23Gj4P7qVUuitFnZBxQnFPBLl2LpDTr3PR8fBrbLd3q2y3SrbgXLwM_TkvH9u-hh-R37ZXYCnZ8AT-q7NfsBEf7haWyvVeujLExcXcd9TzI4wxQFjSDni5MKY_n3Hq7_i2KVhqaf7Gpfm9uOch6USxx0JB-7j-hbrV3AJwC0H-QNKcLEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1433264629</pqid></control><display><type>article</type><title>Computer-aided diagnosis system: A Bayesian hybrid classification method</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>CALLE-ALONSO, F ; PEREZ, C. J ; ARIAS-NICOLAS, J. P ; MARTIN, J</creator><creatorcontrib>CALLE-ALONSO, F ; PEREZ, C. J ; ARIAS-NICOLAS, J. P ; MARTIN, J</creatorcontrib><description>Abstract A novel method to classify multi-class biomedical objects is presented. The method is based on a hybrid approach which combines pairwise comparison, Bayesian regression and the k -nearest neighbor technique. It can be applied in a fully automatic way or in a relevance feedback framework. In the latter case, the information obtained from both an expert and the automatic classification is iteratively used to improve the results until a certain accuracy level is achieved, then, the learning process is finished and new classifications can be automatically performed. The method has been applied in two biomedical contexts by following the same cross-validation schemes as in the original studies. The first one refers to cancer diagnosis, leading to an accuracy of 77.35% versus 66.37%, originally obtained. The second one considers the diagnosis of pathologies of the vertebral column. The original method achieves accuracies ranging from 76.5% to 96.7%, and from 82.3% to 97.1% in two different cross-validation schemes. Even with no supervision, the proposed method reaches 96.71% and 97.32% in these two cases. By using a supervised framework the achieved accuracy is 97.74%. Furthermore, all abnormal cases were correctly classified.</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/j.cmpb.2013.05.029</identifier><identifier>PMID: 23932384</identifier><language>eng</language><publisher>Kidlington: Elsevier Ireland Ltd</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Bayes Theorem ; Bayesian methodology ; Biological and medical sciences ; Breast Neoplasms - classification ; Breast Neoplasms - diagnosis ; Classification ; Classification - methods ; Computer science; control theory; systems ; Computer-aided diagnosis ; Computerized, statistical medical data processing and models in biomedicine ; Data processing. List processing. Character string processing ; Diagnosis, Computer-Assisted - methods ; Diagnosis, Computer-Assisted - statistics & numerical data ; Exact sciences and technology ; Female ; Humans ; Internal Medicine ; Medical management aid. Diagnosis aid ; Medical sciences ; Memory organisation. Data processing ; Other ; Pattern Recognition, Automated ; Relevance feedback ; Software ; Spinal Diseases - classification ; Spinal Diseases - diagnosis ; Tumors</subject><ispartof>Computer methods and programs in biomedicine, 2013-10, Vol.112 (1), p.104-113</ispartof><rights>Elsevier Ireland Ltd</rights><rights>2013 Elsevier Ireland Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-bb9c683b367c8c06121f98d6088532f0cca8c5ed15afcc9c16f5aa6952703a5f3</citedby><cites>FETCH-LOGICAL-c474t-bb9c683b367c8c06121f98d6088532f0cca8c5ed15afcc9c16f5aa6952703a5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169260713001910$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27699350$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23932384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>CALLE-ALONSO, F</creatorcontrib><creatorcontrib>PEREZ, C. J</creatorcontrib><creatorcontrib>ARIAS-NICOLAS, J. P</creatorcontrib><creatorcontrib>MARTIN, J</creatorcontrib><title>Computer-aided diagnosis system: A Bayesian hybrid classification method</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>Abstract A novel method to classify multi-class biomedical objects is presented. The method is based on a hybrid approach which combines pairwise comparison, Bayesian regression and the k -nearest neighbor technique. It can be applied in a fully automatic way or in a relevance feedback framework. In the latter case, the information obtained from both an expert and the automatic classification is iteratively used to improve the results until a certain accuracy level is achieved, then, the learning process is finished and new classifications can be automatically performed. The method has been applied in two biomedical contexts by following the same cross-validation schemes as in the original studies. The first one refers to cancer diagnosis, leading to an accuracy of 77.35% versus 66.37%, originally obtained. The second one considers the diagnosis of pathologies of the vertebral column. The original method achieves accuracies ranging from 76.5% to 96.7%, and from 82.3% to 97.1% in two different cross-validation schemes. Even with no supervision, the proposed method reaches 96.71% and 97.32% in these two cases. By using a supervised framework the achieved accuracy is 97.74%. Furthermore, all abnormal cases were correctly classified.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Bayes Theorem</subject><subject>Bayesian methodology</subject><subject>Biological and medical sciences</subject><subject>Breast Neoplasms - classification</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Classification</subject><subject>Classification - methods</subject><subject>Computer science; control theory; systems</subject><subject>Computer-aided diagnosis</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Data processing. List processing. Character string processing</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Diagnosis, Computer-Assisted - statistics & numerical data</subject><subject>Exact sciences and technology</subject><subject>Female</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Medical management aid. Diagnosis aid</subject><subject>Medical sciences</subject><subject>Memory organisation. Data processing</subject><subject>Other</subject><subject>Pattern Recognition, Automated</subject><subject>Relevance feedback</subject><subject>Software</subject><subject>Spinal Diseases - classification</subject><subject>Spinal Diseases - diagnosis</subject><subject>Tumors</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk2LFDEQhoMo7rj6BzxIXwQv3VaSSToREdZBXWHBg3oO6UrazdgfY6pbmH9vtzMqeNBTXZ63KJ63GHvMoeLA9fN9hf2hqQRwWYGqQNg7bMNNLcpaaXWXbRbIlkJDfcEeEO0BQCil77MLIa0U0mw37Ho39od5irn0KcRQhOS_DCMlKuhIU-xfFFfFa3-MlPxQ3B6bnEKBnSdKbUI_pXEo-jjdjuEhu9f6juKj87xkn9---bS7Lm8-vHu_u7opcVtvp7JpLGojG6lrNAiaC95aEzQYo6RoAdEbVDFw5VtEi1y3ynttlahBetXKS_bstPeQx29zpMn1iTB2nR_iOJPjCqA23Gj4P7qVUuitFnZBxQnFPBLl2LpDTr3PR8fBrbLd3q2y3SrbgXLwM_TkvH9u-hh-R37ZXYCnZ8AT-q7NfsBEf7haWyvVeujLExcXcd9TzI4wxQFjSDni5MKY_n3Hq7_i2KVhqaf7Gpfm9uOch6USxx0JB-7j-hbrV3AJwC0H-QNKcLEg</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>CALLE-ALONSO, F</creator><creator>PEREZ, C. J</creator><creator>ARIAS-NICOLAS, J. P</creator><creator>MARTIN, J</creator><general>Elsevier Ireland Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20131001</creationdate><title>Computer-aided diagnosis system: A Bayesian hybrid classification method</title><author>CALLE-ALONSO, F ; PEREZ, C. J ; ARIAS-NICOLAS, J. P ; MARTIN, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-bb9c683b367c8c06121f98d6088532f0cca8c5ed15afcc9c16f5aa6952703a5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Bayes Theorem</topic><topic>Bayesian methodology</topic><topic>Biological and medical sciences</topic><topic>Breast Neoplasms - classification</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Classification</topic><topic>Classification - methods</topic><topic>Computer science; control theory; systems</topic><topic>Computer-aided diagnosis</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Data processing. List processing. Character string processing</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Diagnosis, Computer-Assisted - statistics & numerical data</topic><topic>Exact sciences and technology</topic><topic>Female</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Medical management aid. Diagnosis aid</topic><topic>Medical sciences</topic><topic>Memory organisation. Data processing</topic><topic>Other</topic><topic>Pattern Recognition, Automated</topic><topic>Relevance feedback</topic><topic>Software</topic><topic>Spinal Diseases - classification</topic><topic>Spinal Diseases - diagnosis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CALLE-ALONSO, F</creatorcontrib><creatorcontrib>PEREZ, C. J</creatorcontrib><creatorcontrib>ARIAS-NICOLAS, J. P</creatorcontrib><creatorcontrib>MARTIN, J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CALLE-ALONSO, F</au><au>PEREZ, C. J</au><au>ARIAS-NICOLAS, J. P</au><au>MARTIN, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer-aided diagnosis system: A Bayesian hybrid classification method</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>112</volume><issue>1</issue><spage>104</spage><epage>113</epage><pages>104-113</pages><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>Abstract A novel method to classify multi-class biomedical objects is presented. The method is based on a hybrid approach which combines pairwise comparison, Bayesian regression and the k -nearest neighbor technique. It can be applied in a fully automatic way or in a relevance feedback framework. In the latter case, the information obtained from both an expert and the automatic classification is iteratively used to improve the results until a certain accuracy level is achieved, then, the learning process is finished and new classifications can be automatically performed. The method has been applied in two biomedical contexts by following the same cross-validation schemes as in the original studies. The first one refers to cancer diagnosis, leading to an accuracy of 77.35% versus 66.37%, originally obtained. The second one considers the diagnosis of pathologies of the vertebral column. The original method achieves accuracies ranging from 76.5% to 96.7%, and from 82.3% to 97.1% in two different cross-validation schemes. Even with no supervision, the proposed method reaches 96.71% and 97.32% in these two cases. By using a supervised framework the achieved accuracy is 97.74%. Furthermore, all abnormal cases were correctly classified.</abstract><cop>Kidlington</cop><pub>Elsevier Ireland Ltd</pub><pmid>23932384</pmid><doi>10.1016/j.cmpb.2013.05.029</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-2607 |
ispartof | Computer methods and programs in biomedicine, 2013-10, Vol.112 (1), p.104-113 |
issn | 0169-2607 1872-7565 |
language | eng |
recordid | cdi_proquest_miscellaneous_1500781860 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Algorithms Applied sciences Artificial Intelligence Bayes Theorem Bayesian methodology Biological and medical sciences Breast Neoplasms - classification Breast Neoplasms - diagnosis Classification Classification - methods Computer science control theory systems Computer-aided diagnosis Computerized, statistical medical data processing and models in biomedicine Data processing. List processing. Character string processing Diagnosis, Computer-Assisted - methods Diagnosis, Computer-Assisted - statistics & numerical data Exact sciences and technology Female Humans Internal Medicine Medical management aid. Diagnosis aid Medical sciences Memory organisation. Data processing Other Pattern Recognition, Automated Relevance feedback Software Spinal Diseases - classification Spinal Diseases - diagnosis Tumors |
title | Computer-aided diagnosis system: A Bayesian hybrid classification method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A46%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer-aided%20diagnosis%20system:%20A%20Bayesian%20hybrid%20classification%20method&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=CALLE-ALONSO,%20F&rft.date=2013-10-01&rft.volume=112&rft.issue=1&rft.spage=104&rft.epage=113&rft.pages=104-113&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/j.cmpb.2013.05.029&rft_dat=%3Cproquest_cross%3E1500781860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1433264629&rft_id=info:pmid/23932384&rft_els_id=1_s2_0_S0169260713001910&rfr_iscdi=true |