Chloroacetonitrile and N,2-Dichloroacetamide Formation from the Reaction of Chloroacetaldehyde and Monochloramine in Water

Combined chlorine is increasingly being used as an alternative disinfectant to free chlorine to maintain a residual in drinking water distribution systems mainly because it would reduce the formation of regulated disinfection byproducts (DBPs) trihalomethanes and haloacetic acids. However, the use o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2013-11, Vol.47 (21), p.12382-12390
Hauptverfasser: Kimura, Susana Y, Komaki, Yukako, Plewa, Michael J, Mariñas, Benito J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12390
container_issue 21
container_start_page 12382
container_title Environmental science & technology
container_volume 47
creator Kimura, Susana Y
Komaki, Yukako
Plewa, Michael J
Mariñas, Benito J
description Combined chlorine is increasingly being used as an alternative disinfectant to free chlorine to maintain a residual in drinking water distribution systems mainly because it would reduce the formation of regulated disinfection byproducts (DBPs) trihalomethanes and haloacetic acids. However, the use of combined chlorine could promote the formation of currently unregulated nitrogenous DBPs (N-DBPs) such as haloacetonitriles and haloacetamides that are found to be more cyto- and genotoxic than regulated DBPs. Monochloramine quickly reacts with chloroacetaldehyde, a DBP formed during primary disinfection with free chlorine, forming and reaching pseudoequilibrium (equilibrium constant K 1 = 1.87 × 103 M–1) with the carbinolamine 2-chloro-1-(chloroamino)ethanol. 2-Chloro-1-(chloroamino)ethanol undergoes slow dehydration to form the imine 1-chloro-2-(chloroimino)ethane that decomposes at a faster rate to chloroacetonitrile. 2-Chloro-1-(chloroamino)ethanol is also oxidized by monochloramine to produce the previously unreported DBP N,2-dichloroacetamide. The carbinolamine dehydration step was found to be acid/base catalyzed (k 2 0 = 3.30 × 10–6 s–1, k 2 H = 2.43 M–1 s–1, k 2 OH = 3.90 M–1 s–1). In contrast, N,2-dichloroacetamide formation was observed to be only base catalyzed (k 3 OH = 3.03 × 104 M–2 s–1). N,2-dichloroacetamide cytotoxicity (LC50 = 2.56 × 10–4 M) was found to be slightly lower compared to that reported for chloroacetamide but higher than those of di- and trichloroacetamide.
doi_str_mv 10.1021/es4029638
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500777600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126601731</sourcerecordid><originalsourceid>FETCH-LOGICAL-a406t-b384476c87c2a6de8a5d14379a0a39092e93c3b0fa1c6ab5af71866879d8e853</originalsourceid><addsrcrecordid>eNplkV1rFDEUhoModq1e-AckIAULjp58J5eybbVQFaSgd8PZTIZNmUlqMntRf71jd90Ve3XgnIfnvPAS8pLBOwacvQ9VAnda2EdkwRSHRlnFHpMFABONE_rHEXlW6w0AcAH2KTnikkmjLCzIr-V6yCWjD1NOcSpxCBRTR7-85c1Z9PsjjrEL9CKXEaeYE-1LHum0DvRbQH-_yT09uHDowvqu27o-55TvTbMkBRoT_Y5TKM_Jkx6HGl7s5jG5vji_Xn5qrr5-vFx-uGpQgp6albBSGu2t8Rx1FyyqjklhHAIKB44HJ7xYQY_Ma1wp7A2zWlvjOhusEsfkzVZ7W_LPTahTO8bqwzBgCnlTW6YAjDEaYEZf_4fe5E1Jc7iWSWWFlnOUmTrdUr7kWkvo29sSRyx3LYP2Tx_tvo-ZfbUzblZj6Pbk3wJm4GQHYPU49AWTj_XAGSe4te7Aoa__pHrw8Dcz_54f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1458364844</pqid></control><display><type>article</type><title>Chloroacetonitrile and N,2-Dichloroacetamide Formation from the Reaction of Chloroacetaldehyde and Monochloramine in Water</title><source>MEDLINE</source><source>ACS Publications</source><creator>Kimura, Susana Y ; Komaki, Yukako ; Plewa, Michael J ; Mariñas, Benito J</creator><creatorcontrib>Kimura, Susana Y ; Komaki, Yukako ; Plewa, Michael J ; Mariñas, Benito J</creatorcontrib><description>Combined chlorine is increasingly being used as an alternative disinfectant to free chlorine to maintain a residual in drinking water distribution systems mainly because it would reduce the formation of regulated disinfection byproducts (DBPs) trihalomethanes and haloacetic acids. However, the use of combined chlorine could promote the formation of currently unregulated nitrogenous DBPs (N-DBPs) such as haloacetonitriles and haloacetamides that are found to be more cyto- and genotoxic than regulated DBPs. Monochloramine quickly reacts with chloroacetaldehyde, a DBP formed during primary disinfection with free chlorine, forming and reaching pseudoequilibrium (equilibrium constant K 1 = 1.87 × 103 M–1) with the carbinolamine 2-chloro-1-(chloroamino)ethanol. 2-Chloro-1-(chloroamino)ethanol undergoes slow dehydration to form the imine 1-chloro-2-(chloroimino)ethane that decomposes at a faster rate to chloroacetonitrile. 2-Chloro-1-(chloroamino)ethanol is also oxidized by monochloramine to produce the previously unreported DBP N,2-dichloroacetamide. The carbinolamine dehydration step was found to be acid/base catalyzed (k 2 0 = 3.30 × 10–6 s–1, k 2 H = 2.43 M–1 s–1, k 2 OH = 3.90 M–1 s–1). In contrast, N,2-dichloroacetamide formation was observed to be only base catalyzed (k 3 OH = 3.03 × 104 M–2 s–1). N,2-dichloroacetamide cytotoxicity (LC50 = 2.56 × 10–4 M) was found to be slightly lower compared to that reported for chloroacetamide but higher than those of di- and trichloroacetamide.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es4029638</identifier><identifier>PMID: 24147580</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Acetaldehyde - analogs &amp; derivatives ; Acetaldehyde - chemistry ; Acetamides - chemistry ; Acetamides - toxicity ; Acetonitriles - chemistry ; Animals ; Applied sciences ; Catalysis - drug effects ; Cell Death - drug effects ; Chloramines - chemistry ; Chlorine ; CHO Cells ; Cricetinae ; Cricetulus ; Cytotoxicity ; Disinfection &amp; disinfectants ; Drinking water ; Drinking Water - chemistry ; Drinking water and swimming-pool water. Desalination ; Ethanol ; Exact sciences and technology ; Hydrogen-Ion Concentration - drug effects ; Kinetics ; Pollution ; Spectrum Analysis ; Water - chemistry ; Water Pollutants, Chemical - chemistry ; Water treatment and pollution</subject><ispartof>Environmental science &amp; technology, 2013-11, Vol.47 (21), p.12382-12390</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Nov 5, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a406t-b384476c87c2a6de8a5d14379a0a39092e93c3b0fa1c6ab5af71866879d8e853</citedby><cites>FETCH-LOGICAL-a406t-b384476c87c2a6de8a5d14379a0a39092e93c3b0fa1c6ab5af71866879d8e853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es4029638$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es4029638$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27932889$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24147580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kimura, Susana Y</creatorcontrib><creatorcontrib>Komaki, Yukako</creatorcontrib><creatorcontrib>Plewa, Michael J</creatorcontrib><creatorcontrib>Mariñas, Benito J</creatorcontrib><title>Chloroacetonitrile and N,2-Dichloroacetamide Formation from the Reaction of Chloroacetaldehyde and Monochloramine in Water</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Combined chlorine is increasingly being used as an alternative disinfectant to free chlorine to maintain a residual in drinking water distribution systems mainly because it would reduce the formation of regulated disinfection byproducts (DBPs) trihalomethanes and haloacetic acids. However, the use of combined chlorine could promote the formation of currently unregulated nitrogenous DBPs (N-DBPs) such as haloacetonitriles and haloacetamides that are found to be more cyto- and genotoxic than regulated DBPs. Monochloramine quickly reacts with chloroacetaldehyde, a DBP formed during primary disinfection with free chlorine, forming and reaching pseudoequilibrium (equilibrium constant K 1 = 1.87 × 103 M–1) with the carbinolamine 2-chloro-1-(chloroamino)ethanol. 2-Chloro-1-(chloroamino)ethanol undergoes slow dehydration to form the imine 1-chloro-2-(chloroimino)ethane that decomposes at a faster rate to chloroacetonitrile. 2-Chloro-1-(chloroamino)ethanol is also oxidized by monochloramine to produce the previously unreported DBP N,2-dichloroacetamide. The carbinolamine dehydration step was found to be acid/base catalyzed (k 2 0 = 3.30 × 10–6 s–1, k 2 H = 2.43 M–1 s–1, k 2 OH = 3.90 M–1 s–1). In contrast, N,2-dichloroacetamide formation was observed to be only base catalyzed (k 3 OH = 3.03 × 104 M–2 s–1). N,2-dichloroacetamide cytotoxicity (LC50 = 2.56 × 10–4 M) was found to be slightly lower compared to that reported for chloroacetamide but higher than those of di- and trichloroacetamide.</description><subject>Acetaldehyde - analogs &amp; derivatives</subject><subject>Acetaldehyde - chemistry</subject><subject>Acetamides - chemistry</subject><subject>Acetamides - toxicity</subject><subject>Acetonitriles - chemistry</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Catalysis - drug effects</subject><subject>Cell Death - drug effects</subject><subject>Chloramines - chemistry</subject><subject>Chlorine</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Cytotoxicity</subject><subject>Disinfection &amp; disinfectants</subject><subject>Drinking water</subject><subject>Drinking Water - chemistry</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>Ethanol</subject><subject>Exact sciences and technology</subject><subject>Hydrogen-Ion Concentration - drug effects</subject><subject>Kinetics</subject><subject>Pollution</subject><subject>Spectrum Analysis</subject><subject>Water - chemistry</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water treatment and pollution</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkV1rFDEUhoModq1e-AckIAULjp58J5eybbVQFaSgd8PZTIZNmUlqMntRf71jd90Ve3XgnIfnvPAS8pLBOwacvQ9VAnda2EdkwRSHRlnFHpMFABONE_rHEXlW6w0AcAH2KTnikkmjLCzIr-V6yCWjD1NOcSpxCBRTR7-85c1Z9PsjjrEL9CKXEaeYE-1LHum0DvRbQH-_yT09uHDowvqu27o-55TvTbMkBRoT_Y5TKM_Jkx6HGl7s5jG5vji_Xn5qrr5-vFx-uGpQgp6albBSGu2t8Rx1FyyqjklhHAIKB44HJ7xYQY_Ma1wp7A2zWlvjOhusEsfkzVZ7W_LPTahTO8bqwzBgCnlTW6YAjDEaYEZf_4fe5E1Jc7iWSWWFlnOUmTrdUr7kWkvo29sSRyx3LYP2Tx_tvo-ZfbUzblZj6Pbk3wJm4GQHYPU49AWTj_XAGSe4te7Aoa__pHrw8Dcz_54f</recordid><startdate>20131105</startdate><enddate>20131105</enddate><creator>Kimura, Susana Y</creator><creator>Komaki, Yukako</creator><creator>Plewa, Michael J</creator><creator>Mariñas, Benito J</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7QH</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20131105</creationdate><title>Chloroacetonitrile and N,2-Dichloroacetamide Formation from the Reaction of Chloroacetaldehyde and Monochloramine in Water</title><author>Kimura, Susana Y ; Komaki, Yukako ; Plewa, Michael J ; Mariñas, Benito J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a406t-b384476c87c2a6de8a5d14379a0a39092e93c3b0fa1c6ab5af71866879d8e853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acetaldehyde - analogs &amp; derivatives</topic><topic>Acetaldehyde - chemistry</topic><topic>Acetamides - chemistry</topic><topic>Acetamides - toxicity</topic><topic>Acetonitriles - chemistry</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Catalysis - drug effects</topic><topic>Cell Death - drug effects</topic><topic>Chloramines - chemistry</topic><topic>Chlorine</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Cytotoxicity</topic><topic>Disinfection &amp; disinfectants</topic><topic>Drinking water</topic><topic>Drinking Water - chemistry</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>Ethanol</topic><topic>Exact sciences and technology</topic><topic>Hydrogen-Ion Concentration - drug effects</topic><topic>Kinetics</topic><topic>Pollution</topic><topic>Spectrum Analysis</topic><topic>Water - chemistry</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kimura, Susana Y</creatorcontrib><creatorcontrib>Komaki, Yukako</creatorcontrib><creatorcontrib>Plewa, Michael J</creatorcontrib><creatorcontrib>Mariñas, Benito J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kimura, Susana Y</au><au>Komaki, Yukako</au><au>Plewa, Michael J</au><au>Mariñas, Benito J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chloroacetonitrile and N,2-Dichloroacetamide Formation from the Reaction of Chloroacetaldehyde and Monochloramine in Water</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2013-11-05</date><risdate>2013</risdate><volume>47</volume><issue>21</issue><spage>12382</spage><epage>12390</epage><pages>12382-12390</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Combined chlorine is increasingly being used as an alternative disinfectant to free chlorine to maintain a residual in drinking water distribution systems mainly because it would reduce the formation of regulated disinfection byproducts (DBPs) trihalomethanes and haloacetic acids. However, the use of combined chlorine could promote the formation of currently unregulated nitrogenous DBPs (N-DBPs) such as haloacetonitriles and haloacetamides that are found to be more cyto- and genotoxic than regulated DBPs. Monochloramine quickly reacts with chloroacetaldehyde, a DBP formed during primary disinfection with free chlorine, forming and reaching pseudoequilibrium (equilibrium constant K 1 = 1.87 × 103 M–1) with the carbinolamine 2-chloro-1-(chloroamino)ethanol. 2-Chloro-1-(chloroamino)ethanol undergoes slow dehydration to form the imine 1-chloro-2-(chloroimino)ethane that decomposes at a faster rate to chloroacetonitrile. 2-Chloro-1-(chloroamino)ethanol is also oxidized by monochloramine to produce the previously unreported DBP N,2-dichloroacetamide. The carbinolamine dehydration step was found to be acid/base catalyzed (k 2 0 = 3.30 × 10–6 s–1, k 2 H = 2.43 M–1 s–1, k 2 OH = 3.90 M–1 s–1). In contrast, N,2-dichloroacetamide formation was observed to be only base catalyzed (k 3 OH = 3.03 × 104 M–2 s–1). N,2-dichloroacetamide cytotoxicity (LC50 = 2.56 × 10–4 M) was found to be slightly lower compared to that reported for chloroacetamide but higher than those of di- and trichloroacetamide.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24147580</pmid><doi>10.1021/es4029638</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2013-11, Vol.47 (21), p.12382-12390
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1500777600
source MEDLINE; ACS Publications
subjects Acetaldehyde - analogs & derivatives
Acetaldehyde - chemistry
Acetamides - chemistry
Acetamides - toxicity
Acetonitriles - chemistry
Animals
Applied sciences
Catalysis - drug effects
Cell Death - drug effects
Chloramines - chemistry
Chlorine
CHO Cells
Cricetinae
Cricetulus
Cytotoxicity
Disinfection & disinfectants
Drinking water
Drinking Water - chemistry
Drinking water and swimming-pool water. Desalination
Ethanol
Exact sciences and technology
Hydrogen-Ion Concentration - drug effects
Kinetics
Pollution
Spectrum Analysis
Water - chemistry
Water Pollutants, Chemical - chemistry
Water treatment and pollution
title Chloroacetonitrile and N,2-Dichloroacetamide Formation from the Reaction of Chloroacetaldehyde and Monochloramine in Water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A09%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chloroacetonitrile%20and%20N,2-Dichloroacetamide%20Formation%20from%20the%20Reaction%20of%20Chloroacetaldehyde%20and%20Monochloramine%20in%20Water&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Kimura,%20Susana%20Y&rft.date=2013-11-05&rft.volume=47&rft.issue=21&rft.spage=12382&rft.epage=12390&rft.pages=12382-12390&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es4029638&rft_dat=%3Cproquest_cross%3E3126601731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1458364844&rft_id=info:pmid/24147580&rfr_iscdi=true