Chloroacetonitrile and N,2-Dichloroacetamide Formation from the Reaction of Chloroacetaldehyde and Monochloramine in Water
Combined chlorine is increasingly being used as an alternative disinfectant to free chlorine to maintain a residual in drinking water distribution systems mainly because it would reduce the formation of regulated disinfection byproducts (DBPs) trihalomethanes and haloacetic acids. However, the use o...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2013-11, Vol.47 (21), p.12382-12390 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12390 |
---|---|
container_issue | 21 |
container_start_page | 12382 |
container_title | Environmental science & technology |
container_volume | 47 |
creator | Kimura, Susana Y Komaki, Yukako Plewa, Michael J Mariñas, Benito J |
description | Combined chlorine is increasingly being used as an alternative disinfectant to free chlorine to maintain a residual in drinking water distribution systems mainly because it would reduce the formation of regulated disinfection byproducts (DBPs) trihalomethanes and haloacetic acids. However, the use of combined chlorine could promote the formation of currently unregulated nitrogenous DBPs (N-DBPs) such as haloacetonitriles and haloacetamides that are found to be more cyto- and genotoxic than regulated DBPs. Monochloramine quickly reacts with chloroacetaldehyde, a DBP formed during primary disinfection with free chlorine, forming and reaching pseudoequilibrium (equilibrium constant K 1 = 1.87 × 103 M–1) with the carbinolamine 2-chloro-1-(chloroamino)ethanol. 2-Chloro-1-(chloroamino)ethanol undergoes slow dehydration to form the imine 1-chloro-2-(chloroimino)ethane that decomposes at a faster rate to chloroacetonitrile. 2-Chloro-1-(chloroamino)ethanol is also oxidized by monochloramine to produce the previously unreported DBP N,2-dichloroacetamide. The carbinolamine dehydration step was found to be acid/base catalyzed (k 2 0 = 3.30 × 10–6 s–1, k 2 H = 2.43 M–1 s–1, k 2 OH = 3.90 M–1 s–1). In contrast, N,2-dichloroacetamide formation was observed to be only base catalyzed (k 3 OH = 3.03 × 104 M–2 s–1). N,2-dichloroacetamide cytotoxicity (LC50 = 2.56 × 10–4 M) was found to be slightly lower compared to that reported for chloroacetamide but higher than those of di- and trichloroacetamide. |
doi_str_mv | 10.1021/es4029638 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500777600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126601731</sourcerecordid><originalsourceid>FETCH-LOGICAL-a406t-b384476c87c2a6de8a5d14379a0a39092e93c3b0fa1c6ab5af71866879d8e853</originalsourceid><addsrcrecordid>eNplkV1rFDEUhoModq1e-AckIAULjp58J5eybbVQFaSgd8PZTIZNmUlqMntRf71jd90Ve3XgnIfnvPAS8pLBOwacvQ9VAnda2EdkwRSHRlnFHpMFABONE_rHEXlW6w0AcAH2KTnikkmjLCzIr-V6yCWjD1NOcSpxCBRTR7-85c1Z9PsjjrEL9CKXEaeYE-1LHum0DvRbQH-_yT09uHDowvqu27o-55TvTbMkBRoT_Y5TKM_Jkx6HGl7s5jG5vji_Xn5qrr5-vFx-uGpQgp6albBSGu2t8Rx1FyyqjklhHAIKB44HJ7xYQY_Ma1wp7A2zWlvjOhusEsfkzVZ7W_LPTahTO8bqwzBgCnlTW6YAjDEaYEZf_4fe5E1Jc7iWSWWFlnOUmTrdUr7kWkvo29sSRyx3LYP2Tx_tvo-ZfbUzblZj6Pbk3wJm4GQHYPU49AWTj_XAGSe4te7Aoa__pHrw8Dcz_54f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1458364844</pqid></control><display><type>article</type><title>Chloroacetonitrile and N,2-Dichloroacetamide Formation from the Reaction of Chloroacetaldehyde and Monochloramine in Water</title><source>MEDLINE</source><source>ACS Publications</source><creator>Kimura, Susana Y ; Komaki, Yukako ; Plewa, Michael J ; Mariñas, Benito J</creator><creatorcontrib>Kimura, Susana Y ; Komaki, Yukako ; Plewa, Michael J ; Mariñas, Benito J</creatorcontrib><description>Combined chlorine is increasingly being used as an alternative disinfectant to free chlorine to maintain a residual in drinking water distribution systems mainly because it would reduce the formation of regulated disinfection byproducts (DBPs) trihalomethanes and haloacetic acids. However, the use of combined chlorine could promote the formation of currently unregulated nitrogenous DBPs (N-DBPs) such as haloacetonitriles and haloacetamides that are found to be more cyto- and genotoxic than regulated DBPs. Monochloramine quickly reacts with chloroacetaldehyde, a DBP formed during primary disinfection with free chlorine, forming and reaching pseudoequilibrium (equilibrium constant K 1 = 1.87 × 103 M–1) with the carbinolamine 2-chloro-1-(chloroamino)ethanol. 2-Chloro-1-(chloroamino)ethanol undergoes slow dehydration to form the imine 1-chloro-2-(chloroimino)ethane that decomposes at a faster rate to chloroacetonitrile. 2-Chloro-1-(chloroamino)ethanol is also oxidized by monochloramine to produce the previously unreported DBP N,2-dichloroacetamide. The carbinolamine dehydration step was found to be acid/base catalyzed (k 2 0 = 3.30 × 10–6 s–1, k 2 H = 2.43 M–1 s–1, k 2 OH = 3.90 M–1 s–1). In contrast, N,2-dichloroacetamide formation was observed to be only base catalyzed (k 3 OH = 3.03 × 104 M–2 s–1). N,2-dichloroacetamide cytotoxicity (LC50 = 2.56 × 10–4 M) was found to be slightly lower compared to that reported for chloroacetamide but higher than those of di- and trichloroacetamide.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es4029638</identifier><identifier>PMID: 24147580</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Acetaldehyde - analogs & derivatives ; Acetaldehyde - chemistry ; Acetamides - chemistry ; Acetamides - toxicity ; Acetonitriles - chemistry ; Animals ; Applied sciences ; Catalysis - drug effects ; Cell Death - drug effects ; Chloramines - chemistry ; Chlorine ; CHO Cells ; Cricetinae ; Cricetulus ; Cytotoxicity ; Disinfection & disinfectants ; Drinking water ; Drinking Water - chemistry ; Drinking water and swimming-pool water. Desalination ; Ethanol ; Exact sciences and technology ; Hydrogen-Ion Concentration - drug effects ; Kinetics ; Pollution ; Spectrum Analysis ; Water - chemistry ; Water Pollutants, Chemical - chemistry ; Water treatment and pollution</subject><ispartof>Environmental science & technology, 2013-11, Vol.47 (21), p.12382-12390</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Nov 5, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a406t-b384476c87c2a6de8a5d14379a0a39092e93c3b0fa1c6ab5af71866879d8e853</citedby><cites>FETCH-LOGICAL-a406t-b384476c87c2a6de8a5d14379a0a39092e93c3b0fa1c6ab5af71866879d8e853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es4029638$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es4029638$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27932889$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24147580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kimura, Susana Y</creatorcontrib><creatorcontrib>Komaki, Yukako</creatorcontrib><creatorcontrib>Plewa, Michael J</creatorcontrib><creatorcontrib>Mariñas, Benito J</creatorcontrib><title>Chloroacetonitrile and N,2-Dichloroacetamide Formation from the Reaction of Chloroacetaldehyde and Monochloramine in Water</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Combined chlorine is increasingly being used as an alternative disinfectant to free chlorine to maintain a residual in drinking water distribution systems mainly because it would reduce the formation of regulated disinfection byproducts (DBPs) trihalomethanes and haloacetic acids. However, the use of combined chlorine could promote the formation of currently unregulated nitrogenous DBPs (N-DBPs) such as haloacetonitriles and haloacetamides that are found to be more cyto- and genotoxic than regulated DBPs. Monochloramine quickly reacts with chloroacetaldehyde, a DBP formed during primary disinfection with free chlorine, forming and reaching pseudoequilibrium (equilibrium constant K 1 = 1.87 × 103 M–1) with the carbinolamine 2-chloro-1-(chloroamino)ethanol. 2-Chloro-1-(chloroamino)ethanol undergoes slow dehydration to form the imine 1-chloro-2-(chloroimino)ethane that decomposes at a faster rate to chloroacetonitrile. 2-Chloro-1-(chloroamino)ethanol is also oxidized by monochloramine to produce the previously unreported DBP N,2-dichloroacetamide. The carbinolamine dehydration step was found to be acid/base catalyzed (k 2 0 = 3.30 × 10–6 s–1, k 2 H = 2.43 M–1 s–1, k 2 OH = 3.90 M–1 s–1). In contrast, N,2-dichloroacetamide formation was observed to be only base catalyzed (k 3 OH = 3.03 × 104 M–2 s–1). N,2-dichloroacetamide cytotoxicity (LC50 = 2.56 × 10–4 M) was found to be slightly lower compared to that reported for chloroacetamide but higher than those of di- and trichloroacetamide.</description><subject>Acetaldehyde - analogs & derivatives</subject><subject>Acetaldehyde - chemistry</subject><subject>Acetamides - chemistry</subject><subject>Acetamides - toxicity</subject><subject>Acetonitriles - chemistry</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Catalysis - drug effects</subject><subject>Cell Death - drug effects</subject><subject>Chloramines - chemistry</subject><subject>Chlorine</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Cytotoxicity</subject><subject>Disinfection & disinfectants</subject><subject>Drinking water</subject><subject>Drinking Water - chemistry</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>Ethanol</subject><subject>Exact sciences and technology</subject><subject>Hydrogen-Ion Concentration - drug effects</subject><subject>Kinetics</subject><subject>Pollution</subject><subject>Spectrum Analysis</subject><subject>Water - chemistry</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water treatment and pollution</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkV1rFDEUhoModq1e-AckIAULjp58J5eybbVQFaSgd8PZTIZNmUlqMntRf71jd90Ve3XgnIfnvPAS8pLBOwacvQ9VAnda2EdkwRSHRlnFHpMFABONE_rHEXlW6w0AcAH2KTnikkmjLCzIr-V6yCWjD1NOcSpxCBRTR7-85c1Z9PsjjrEL9CKXEaeYE-1LHum0DvRbQH-_yT09uHDowvqu27o-55TvTbMkBRoT_Y5TKM_Jkx6HGl7s5jG5vji_Xn5qrr5-vFx-uGpQgp6albBSGu2t8Rx1FyyqjklhHAIKB44HJ7xYQY_Ma1wp7A2zWlvjOhusEsfkzVZ7W_LPTahTO8bqwzBgCnlTW6YAjDEaYEZf_4fe5E1Jc7iWSWWFlnOUmTrdUr7kWkvo29sSRyx3LYP2Tx_tvo-ZfbUzblZj6Pbk3wJm4GQHYPU49AWTj_XAGSe4te7Aoa__pHrw8Dcz_54f</recordid><startdate>20131105</startdate><enddate>20131105</enddate><creator>Kimura, Susana Y</creator><creator>Komaki, Yukako</creator><creator>Plewa, Michael J</creator><creator>Mariñas, Benito J</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7QH</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20131105</creationdate><title>Chloroacetonitrile and N,2-Dichloroacetamide Formation from the Reaction of Chloroacetaldehyde and Monochloramine in Water</title><author>Kimura, Susana Y ; Komaki, Yukako ; Plewa, Michael J ; Mariñas, Benito J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a406t-b384476c87c2a6de8a5d14379a0a39092e93c3b0fa1c6ab5af71866879d8e853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acetaldehyde - analogs & derivatives</topic><topic>Acetaldehyde - chemistry</topic><topic>Acetamides - chemistry</topic><topic>Acetamides - toxicity</topic><topic>Acetonitriles - chemistry</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Catalysis - drug effects</topic><topic>Cell Death - drug effects</topic><topic>Chloramines - chemistry</topic><topic>Chlorine</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Cytotoxicity</topic><topic>Disinfection & disinfectants</topic><topic>Drinking water</topic><topic>Drinking Water - chemistry</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>Ethanol</topic><topic>Exact sciences and technology</topic><topic>Hydrogen-Ion Concentration - drug effects</topic><topic>Kinetics</topic><topic>Pollution</topic><topic>Spectrum Analysis</topic><topic>Water - chemistry</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kimura, Susana Y</creatorcontrib><creatorcontrib>Komaki, Yukako</creatorcontrib><creatorcontrib>Plewa, Michael J</creatorcontrib><creatorcontrib>Mariñas, Benito J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kimura, Susana Y</au><au>Komaki, Yukako</au><au>Plewa, Michael J</au><au>Mariñas, Benito J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chloroacetonitrile and N,2-Dichloroacetamide Formation from the Reaction of Chloroacetaldehyde and Monochloramine in Water</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2013-11-05</date><risdate>2013</risdate><volume>47</volume><issue>21</issue><spage>12382</spage><epage>12390</epage><pages>12382-12390</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Combined chlorine is increasingly being used as an alternative disinfectant to free chlorine to maintain a residual in drinking water distribution systems mainly because it would reduce the formation of regulated disinfection byproducts (DBPs) trihalomethanes and haloacetic acids. However, the use of combined chlorine could promote the formation of currently unregulated nitrogenous DBPs (N-DBPs) such as haloacetonitriles and haloacetamides that are found to be more cyto- and genotoxic than regulated DBPs. Monochloramine quickly reacts with chloroacetaldehyde, a DBP formed during primary disinfection with free chlorine, forming and reaching pseudoequilibrium (equilibrium constant K 1 = 1.87 × 103 M–1) with the carbinolamine 2-chloro-1-(chloroamino)ethanol. 2-Chloro-1-(chloroamino)ethanol undergoes slow dehydration to form the imine 1-chloro-2-(chloroimino)ethane that decomposes at a faster rate to chloroacetonitrile. 2-Chloro-1-(chloroamino)ethanol is also oxidized by monochloramine to produce the previously unreported DBP N,2-dichloroacetamide. The carbinolamine dehydration step was found to be acid/base catalyzed (k 2 0 = 3.30 × 10–6 s–1, k 2 H = 2.43 M–1 s–1, k 2 OH = 3.90 M–1 s–1). In contrast, N,2-dichloroacetamide formation was observed to be only base catalyzed (k 3 OH = 3.03 × 104 M–2 s–1). N,2-dichloroacetamide cytotoxicity (LC50 = 2.56 × 10–4 M) was found to be slightly lower compared to that reported for chloroacetamide but higher than those of di- and trichloroacetamide.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24147580</pmid><doi>10.1021/es4029638</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2013-11, Vol.47 (21), p.12382-12390 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_1500777600 |
source | MEDLINE; ACS Publications |
subjects | Acetaldehyde - analogs & derivatives Acetaldehyde - chemistry Acetamides - chemistry Acetamides - toxicity Acetonitriles - chemistry Animals Applied sciences Catalysis - drug effects Cell Death - drug effects Chloramines - chemistry Chlorine CHO Cells Cricetinae Cricetulus Cytotoxicity Disinfection & disinfectants Drinking water Drinking Water - chemistry Drinking water and swimming-pool water. Desalination Ethanol Exact sciences and technology Hydrogen-Ion Concentration - drug effects Kinetics Pollution Spectrum Analysis Water - chemistry Water Pollutants, Chemical - chemistry Water treatment and pollution |
title | Chloroacetonitrile and N,2-Dichloroacetamide Formation from the Reaction of Chloroacetaldehyde and Monochloramine in Water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A09%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chloroacetonitrile%20and%20N,2-Dichloroacetamide%20Formation%20from%20the%20Reaction%20of%20Chloroacetaldehyde%20and%20Monochloramine%20in%20Water&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Kimura,%20Susana%20Y&rft.date=2013-11-05&rft.volume=47&rft.issue=21&rft.spage=12382&rft.epage=12390&rft.pages=12382-12390&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es4029638&rft_dat=%3Cproquest_cross%3E3126601731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1458364844&rft_id=info:pmid/24147580&rfr_iscdi=true |