Characterization of bioresidues for biooil production through pyrolysis

•1st report on biooil production from Melia Dubia, Polyalthia longifolia, Raintree fruit.•TGA guided pyrolytic temperature.•Model developed to correlate the composition of bioresidues with biooil production. Biomass is a renewable resource utilized to produce energy, fuels and chemicals. In this stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2013-06, Vol.138, p.71-78
Hauptverfasser: Mythili, R., Venkatachalam, P., Subramanian, P., Uma, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78
container_issue
container_start_page 71
container_title Bioresource technology
container_volume 138
creator Mythili, R.
Venkatachalam, P.
Subramanian, P.
Uma, D.
description •1st report on biooil production from Melia Dubia, Polyalthia longifolia, Raintree fruit.•TGA guided pyrolytic temperature.•Model developed to correlate the composition of bioresidues with biooil production. Biomass is a renewable resource utilized to produce energy, fuels and chemicals. In this study, 25 bioresidues were selected and the physical, chemical, thermal and elemental analyses of the residues were studied as per standard methods. The bioresidues were pyrolyzed at 450°C in a fixed bed reactor to produce biooil. Among the residues, paper (pinfed computer) and Parthenium produced maximum (45%) and minimum biooil (6.33%), respectively. Arecanut stalk, redgram stalk, rice husk, wheat husk, maize cob, coir pith, Cumbu Napier grass Co5, Prosopis wood and paper resulted in a better biooil yield. Models were developed to predict the effect of constituents of bioresidues on the yield of biooil. The volatile matter and cellulose had significant effect on biooil yield. Biooil thus obtained can be used as fuel that may replace considerable fossil fuels.
doi_str_mv 10.1016/j.biortech.2013.03.161
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500770152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852413005543</els_id><sourcerecordid>1500770152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-3d19bffdb4001b7b8b2d853bc21528f87a895f6e0286be0cb54226440339ae913</originalsourceid><addsrcrecordid>eNqFkM1uEzEURi0EomnhFcpskNjMcP3v2YEiKEiVWEDXlu2xG0eTONgzlcLT42lSWHZlWTr3u989CF1j6DBg8XHb2Zjy5N2mI4BpB7TDAr9AK6wkbUkvxUu0gl5AqzhhF-iylC0AUCzJa3RBqMAEC7ZCN-uNycZNPsc_Zopp36TQLNG-xGH2pQkpL_8Ux-aQ0zC7R2ja5DTfb5rDMafxWGJ5g14FMxb_9vxeobuvX36tv7W3P26-rz_fto5xPrV0wL0NYbAMAFtplSWD4tQ6gjlRQUmjeh6EB6KE9eAsZ4QIxoDS3vge0yv04ZRby_yu_Sa9i8X5cTR7n-aiMQeQEmra8yjllEnJe1VRcUJdTqVkH_Qhx53JR41BL771Vj_51otvDVRX33Xw-rxjtjs__Bt7ElyB92fAFGfGkM3exfKfk6xe1tPKvTtxwSRt7nNl7n7WTYsnUZHlnE8nwle9D9FnXVz0e-eHmL2b9JDic23_AlCJqpc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1353477598</pqid></control><display><type>article</type><title>Characterization of bioresidues for biooil production through pyrolysis</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Mythili, R. ; Venkatachalam, P. ; Subramanian, P. ; Uma, D.</creator><creatorcontrib>Mythili, R. ; Venkatachalam, P. ; Subramanian, P. ; Uma, D.</creatorcontrib><description>•1st report on biooil production from Melia Dubia, Polyalthia longifolia, Raintree fruit.•TGA guided pyrolytic temperature.•Model developed to correlate the composition of bioresidues with biooil production. Biomass is a renewable resource utilized to produce energy, fuels and chemicals. In this study, 25 bioresidues were selected and the physical, chemical, thermal and elemental analyses of the residues were studied as per standard methods. The bioresidues were pyrolyzed at 450°C in a fixed bed reactor to produce biooil. Among the residues, paper (pinfed computer) and Parthenium produced maximum (45%) and minimum biooil (6.33%), respectively. Arecanut stalk, redgram stalk, rice husk, wheat husk, maize cob, coir pith, Cumbu Napier grass Co5, Prosopis wood and paper resulted in a better biooil yield. Models were developed to predict the effect of constituents of bioresidues on the yield of biooil. The volatile matter and cellulose had significant effect on biooil yield. Biooil thus obtained can be used as fuel that may replace considerable fossil fuels.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2013.03.161</identifier><identifier>PMID: 23612164</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Biofuels - analysis ; Biological and medical sciences ; biomass ; Biooil ; Bioresidues ; Biotechnology - methods ; Cellulose ; Cellulose - metabolism ; Charcoal ; Computer simulation ; computers ; corn cobs ; energy ; fossil fuels ; Fuels ; Fundamental and applied biological sciences. Psychology ; Hemicellulose ; Hot Temperature ; Mathematical models ; Parthenium ; Pennisetum purpureum ; pith ; Plant Oils - chemistry ; Prosopis ; Pyrolysis ; Renewable resources ; Residues ; rice hulls ; thermal analysis ; Volatilization ; wheat ; Wood</subject><ispartof>Bioresource technology, 2013-06, Vol.138, p.71-78</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-3d19bffdb4001b7b8b2d853bc21528f87a895f6e0286be0cb54226440339ae913</citedby><cites>FETCH-LOGICAL-c455t-3d19bffdb4001b7b8b2d853bc21528f87a895f6e0286be0cb54226440339ae913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2013.03.161$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27433993$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23612164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mythili, R.</creatorcontrib><creatorcontrib>Venkatachalam, P.</creatorcontrib><creatorcontrib>Subramanian, P.</creatorcontrib><creatorcontrib>Uma, D.</creatorcontrib><title>Characterization of bioresidues for biooil production through pyrolysis</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>•1st report on biooil production from Melia Dubia, Polyalthia longifolia, Raintree fruit.•TGA guided pyrolytic temperature.•Model developed to correlate the composition of bioresidues with biooil production. Biomass is a renewable resource utilized to produce energy, fuels and chemicals. In this study, 25 bioresidues were selected and the physical, chemical, thermal and elemental analyses of the residues were studied as per standard methods. The bioresidues were pyrolyzed at 450°C in a fixed bed reactor to produce biooil. Among the residues, paper (pinfed computer) and Parthenium produced maximum (45%) and minimum biooil (6.33%), respectively. Arecanut stalk, redgram stalk, rice husk, wheat husk, maize cob, coir pith, Cumbu Napier grass Co5, Prosopis wood and paper resulted in a better biooil yield. Models were developed to predict the effect of constituents of bioresidues on the yield of biooil. The volatile matter and cellulose had significant effect on biooil yield. Biooil thus obtained can be used as fuel that may replace considerable fossil fuels.</description><subject>Biofuels - analysis</subject><subject>Biological and medical sciences</subject><subject>biomass</subject><subject>Biooil</subject><subject>Bioresidues</subject><subject>Biotechnology - methods</subject><subject>Cellulose</subject><subject>Cellulose - metabolism</subject><subject>Charcoal</subject><subject>Computer simulation</subject><subject>computers</subject><subject>corn cobs</subject><subject>energy</subject><subject>fossil fuels</subject><subject>Fuels</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hemicellulose</subject><subject>Hot Temperature</subject><subject>Mathematical models</subject><subject>Parthenium</subject><subject>Pennisetum purpureum</subject><subject>pith</subject><subject>Plant Oils - chemistry</subject><subject>Prosopis</subject><subject>Pyrolysis</subject><subject>Renewable resources</subject><subject>Residues</subject><subject>rice hulls</subject><subject>thermal analysis</subject><subject>Volatilization</subject><subject>wheat</subject><subject>Wood</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1uEzEURi0EomnhFcpskNjMcP3v2YEiKEiVWEDXlu2xG0eTONgzlcLT42lSWHZlWTr3u989CF1j6DBg8XHb2Zjy5N2mI4BpB7TDAr9AK6wkbUkvxUu0gl5AqzhhF-iylC0AUCzJa3RBqMAEC7ZCN-uNycZNPsc_Zopp36TQLNG-xGH2pQkpL_8Ux-aQ0zC7R2ja5DTfb5rDMafxWGJ5g14FMxb_9vxeobuvX36tv7W3P26-rz_fto5xPrV0wL0NYbAMAFtplSWD4tQ6gjlRQUmjeh6EB6KE9eAsZ4QIxoDS3vge0yv04ZRby_yu_Sa9i8X5cTR7n-aiMQeQEmra8yjllEnJe1VRcUJdTqVkH_Qhx53JR41BL771Vj_51otvDVRX33Xw-rxjtjs__Bt7ElyB92fAFGfGkM3exfKfk6xe1tPKvTtxwSRt7nNl7n7WTYsnUZHlnE8nwle9D9FnXVz0e-eHmL2b9JDic23_AlCJqpc</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Mythili, R.</creator><creator>Venkatachalam, P.</creator><creator>Subramanian, P.</creator><creator>Uma, D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130601</creationdate><title>Characterization of bioresidues for biooil production through pyrolysis</title><author>Mythili, R. ; Venkatachalam, P. ; Subramanian, P. ; Uma, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-3d19bffdb4001b7b8b2d853bc21528f87a895f6e0286be0cb54226440339ae913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biofuels - analysis</topic><topic>Biological and medical sciences</topic><topic>biomass</topic><topic>Biooil</topic><topic>Bioresidues</topic><topic>Biotechnology - methods</topic><topic>Cellulose</topic><topic>Cellulose - metabolism</topic><topic>Charcoal</topic><topic>Computer simulation</topic><topic>computers</topic><topic>corn cobs</topic><topic>energy</topic><topic>fossil fuels</topic><topic>Fuels</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hemicellulose</topic><topic>Hot Temperature</topic><topic>Mathematical models</topic><topic>Parthenium</topic><topic>Pennisetum purpureum</topic><topic>pith</topic><topic>Plant Oils - chemistry</topic><topic>Prosopis</topic><topic>Pyrolysis</topic><topic>Renewable resources</topic><topic>Residues</topic><topic>rice hulls</topic><topic>thermal analysis</topic><topic>Volatilization</topic><topic>wheat</topic><topic>Wood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mythili, R.</creatorcontrib><creatorcontrib>Venkatachalam, P.</creatorcontrib><creatorcontrib>Subramanian, P.</creatorcontrib><creatorcontrib>Uma, D.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mythili, R.</au><au>Venkatachalam, P.</au><au>Subramanian, P.</au><au>Uma, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of bioresidues for biooil production through pyrolysis</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>138</volume><spage>71</spage><epage>78</epage><pages>71-78</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>•1st report on biooil production from Melia Dubia, Polyalthia longifolia, Raintree fruit.•TGA guided pyrolytic temperature.•Model developed to correlate the composition of bioresidues with biooil production. Biomass is a renewable resource utilized to produce energy, fuels and chemicals. In this study, 25 bioresidues were selected and the physical, chemical, thermal and elemental analyses of the residues were studied as per standard methods. The bioresidues were pyrolyzed at 450°C in a fixed bed reactor to produce biooil. Among the residues, paper (pinfed computer) and Parthenium produced maximum (45%) and minimum biooil (6.33%), respectively. Arecanut stalk, redgram stalk, rice husk, wheat husk, maize cob, coir pith, Cumbu Napier grass Co5, Prosopis wood and paper resulted in a better biooil yield. Models were developed to predict the effect of constituents of bioresidues on the yield of biooil. The volatile matter and cellulose had significant effect on biooil yield. Biooil thus obtained can be used as fuel that may replace considerable fossil fuels.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>23612164</pmid><doi>10.1016/j.biortech.2013.03.161</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2013-06, Vol.138, p.71-78
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_1500770152
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Biofuels - analysis
Biological and medical sciences
biomass
Biooil
Bioresidues
Biotechnology - methods
Cellulose
Cellulose - metabolism
Charcoal
Computer simulation
computers
corn cobs
energy
fossil fuels
Fuels
Fundamental and applied biological sciences. Psychology
Hemicellulose
Hot Temperature
Mathematical models
Parthenium
Pennisetum purpureum
pith
Plant Oils - chemistry
Prosopis
Pyrolysis
Renewable resources
Residues
rice hulls
thermal analysis
Volatilization
wheat
Wood
title Characterization of bioresidues for biooil production through pyrolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20bioresidues%20for%20biooil%20production%20through%20pyrolysis&rft.jtitle=Bioresource%20technology&rft.au=Mythili,%20R.&rft.date=2013-06-01&rft.volume=138&rft.spage=71&rft.epage=78&rft.pages=71-78&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2013.03.161&rft_dat=%3Cproquest_cross%3E1500770152%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1353477598&rft_id=info:pmid/23612164&rft_els_id=S0960852413005543&rfr_iscdi=true