Using Multispectral Imaging for Spoilage Detection of Pork Meat
The quality of stored minced pork meat was monitored using a rapid multispectral imaging device to quantify the degree of spoilage. Bacterial counts of a total of 155 meat samples stored for up to 580 h have been measured using conventional laboratory methods. Meat samples were maintained under two...
Gespeichert in:
Veröffentlicht in: | Food and bioprocess technology 2013-09, Vol.6 (9), p.2268-2279 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2279 |
---|---|
container_issue | 9 |
container_start_page | 2268 |
container_title | Food and bioprocess technology |
container_volume | 6 |
creator | Dissing, Bjørn Skovlund Papadopoulou, Olga S. Tassou, Chrysoula Ersbøll, Bjarne Kjaer Carstensen, Jens Michael Panagou, Efstathios Z. Nychas, George-John |
description | The quality of stored minced pork meat was monitored using a rapid multispectral imaging device to quantify the degree of spoilage. Bacterial counts of a total of 155 meat samples stored for up to 580 h have been measured using conventional laboratory methods. Meat samples were maintained under two different storage conditions: aerobic and modified atmosphere packages as well as under different temperatures. Besides bacterial counts, a sensory panel has judged the spoilage degree of all meat samples into one of three classes. Results showed that the multispectral imaging device was able to classify 76.13 % of the meat samples correctly according to the defined sensory scale. Furthermore, the multispectral camera device was able to predict total viable counts with a standard error of prediction of 7.47 %. It is concluded that there is a good possibility that a setup like the one investigated will be successful for the detection of spoilage degree in minced pork meat. |
doi_str_mv | 10.1007/s11947-012-0886-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500769420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1500769420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-bb6c54f158d53e05ec7a99366d41b74dc7cc8b28d76238d6e98960d337b0e1e63</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhosouK7-AG8FL16qM81XcxJZvxZ2UdA9hzRNl67dpibtwX9vS0VB8DRh8rwvwxNF5whXCCCuA6KkIgFME8gynvCDaIaSsIQhlYc_bwLH0UkIOwAOFMksutmEqtnG677uqtBa03ldx8u93o7b0vn4tXVVrbc2vrPd8F25JnZl_OL8e7y2ujuNjkpdB3v2PefR5uH-bfGUrJ4fl4vbVWIosi7Jc24YLZFlBSMWmDVCS0k4LyjmghZGGJPlaVYInpKs4FZmkkNBiMjBouVkHl1Ova13H70NndpXwdi61o11fVDIBgtc0hQG9OIPunO9b4brVEoRhGACxkKcKONdCN6WqvXVXvtPhaBGpWpSqgalalSqxkw6ZcLANlvrf5v_D30BIc13NQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410775706</pqid></control><display><type>article</type><title>Using Multispectral Imaging for Spoilage Detection of Pork Meat</title><source>Springer Nature - Complete Springer Journals</source><creator>Dissing, Bjørn Skovlund ; Papadopoulou, Olga S. ; Tassou, Chrysoula ; Ersbøll, Bjarne Kjaer ; Carstensen, Jens Michael ; Panagou, Efstathios Z. ; Nychas, George-John</creator><creatorcontrib>Dissing, Bjørn Skovlund ; Papadopoulou, Olga S. ; Tassou, Chrysoula ; Ersbøll, Bjarne Kjaer ; Carstensen, Jens Michael ; Panagou, Efstathios Z. ; Nychas, George-John</creatorcontrib><description>The quality of stored minced pork meat was monitored using a rapid multispectral imaging device to quantify the degree of spoilage. Bacterial counts of a total of 155 meat samples stored for up to 580 h have been measured using conventional laboratory methods. Meat samples were maintained under two different storage conditions: aerobic and modified atmosphere packages as well as under different temperatures. Besides bacterial counts, a sensory panel has judged the spoilage degree of all meat samples into one of three classes. Results showed that the multispectral imaging device was able to classify 76.13 % of the meat samples correctly according to the defined sensory scale. Furthermore, the multispectral camera device was able to predict total viable counts with a standard error of prediction of 7.47 %. It is concluded that there is a good possibility that a setup like the one investigated will be successful for the detection of spoilage degree in minced pork meat.</description><identifier>ISSN: 1935-5130</identifier><identifier>EISSN: 1935-5149</identifier><identifier>DOI: 10.1007/s11947-012-0886-6</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Agriculture ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Food Science ; Imaging ; Laboratory methods ; Meat ; Original Paper ; Pork ; Sensory evaluation ; Spoilage ; Standard error ; Storage conditions</subject><ispartof>Food and bioprocess technology, 2013-09, Vol.6 (9), p.2268-2279</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><rights>Springer Science+Business Media, LLC 2012.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-bb6c54f158d53e05ec7a99366d41b74dc7cc8b28d76238d6e98960d337b0e1e63</citedby><cites>FETCH-LOGICAL-c415t-bb6c54f158d53e05ec7a99366d41b74dc7cc8b28d76238d6e98960d337b0e1e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11947-012-0886-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11947-012-0886-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Dissing, Bjørn Skovlund</creatorcontrib><creatorcontrib>Papadopoulou, Olga S.</creatorcontrib><creatorcontrib>Tassou, Chrysoula</creatorcontrib><creatorcontrib>Ersbøll, Bjarne Kjaer</creatorcontrib><creatorcontrib>Carstensen, Jens Michael</creatorcontrib><creatorcontrib>Panagou, Efstathios Z.</creatorcontrib><creatorcontrib>Nychas, George-John</creatorcontrib><title>Using Multispectral Imaging for Spoilage Detection of Pork Meat</title><title>Food and bioprocess technology</title><addtitle>Food Bioprocess Technol</addtitle><description>The quality of stored minced pork meat was monitored using a rapid multispectral imaging device to quantify the degree of spoilage. Bacterial counts of a total of 155 meat samples stored for up to 580 h have been measured using conventional laboratory methods. Meat samples were maintained under two different storage conditions: aerobic and modified atmosphere packages as well as under different temperatures. Besides bacterial counts, a sensory panel has judged the spoilage degree of all meat samples into one of three classes. Results showed that the multispectral imaging device was able to classify 76.13 % of the meat samples correctly according to the defined sensory scale. Furthermore, the multispectral camera device was able to predict total viable counts with a standard error of prediction of 7.47 %. It is concluded that there is a good possibility that a setup like the one investigated will be successful for the detection of spoilage degree in minced pork meat.</description><subject>Agriculture</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Food Science</subject><subject>Imaging</subject><subject>Laboratory methods</subject><subject>Meat</subject><subject>Original Paper</subject><subject>Pork</subject><subject>Sensory evaluation</subject><subject>Spoilage</subject><subject>Standard error</subject><subject>Storage conditions</subject><issn>1935-5130</issn><issn>1935-5149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LxDAQhosouK7-AG8FL16qM81XcxJZvxZ2UdA9hzRNl67dpibtwX9vS0VB8DRh8rwvwxNF5whXCCCuA6KkIgFME8gynvCDaIaSsIQhlYc_bwLH0UkIOwAOFMksutmEqtnG677uqtBa03ldx8u93o7b0vn4tXVVrbc2vrPd8F25JnZl_OL8e7y2ujuNjkpdB3v2PefR5uH-bfGUrJ4fl4vbVWIosi7Jc24YLZFlBSMWmDVCS0k4LyjmghZGGJPlaVYInpKs4FZmkkNBiMjBouVkHl1Ova13H70NndpXwdi61o11fVDIBgtc0hQG9OIPunO9b4brVEoRhGACxkKcKONdCN6WqvXVXvtPhaBGpWpSqgalalSqxkw6ZcLANlvrf5v_D30BIc13NQ</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Dissing, Bjørn Skovlund</creator><creator>Papadopoulou, Olga S.</creator><creator>Tassou, Chrysoula</creator><creator>Ersbøll, Bjarne Kjaer</creator><creator>Carstensen, Jens Michael</creator><creator>Panagou, Efstathios Z.</creator><creator>Nychas, George-John</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20130901</creationdate><title>Using Multispectral Imaging for Spoilage Detection of Pork Meat</title><author>Dissing, Bjørn Skovlund ; Papadopoulou, Olga S. ; Tassou, Chrysoula ; Ersbøll, Bjarne Kjaer ; Carstensen, Jens Michael ; Panagou, Efstathios Z. ; Nychas, George-John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-bb6c54f158d53e05ec7a99366d41b74dc7cc8b28d76238d6e98960d337b0e1e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Agriculture</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Food Science</topic><topic>Imaging</topic><topic>Laboratory methods</topic><topic>Meat</topic><topic>Original Paper</topic><topic>Pork</topic><topic>Sensory evaluation</topic><topic>Spoilage</topic><topic>Standard error</topic><topic>Storage conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dissing, Bjørn Skovlund</creatorcontrib><creatorcontrib>Papadopoulou, Olga S.</creatorcontrib><creatorcontrib>Tassou, Chrysoula</creatorcontrib><creatorcontrib>Ersbøll, Bjarne Kjaer</creatorcontrib><creatorcontrib>Carstensen, Jens Michael</creatorcontrib><creatorcontrib>Panagou, Efstathios Z.</creatorcontrib><creatorcontrib>Nychas, George-John</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Food and bioprocess technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dissing, Bjørn Skovlund</au><au>Papadopoulou, Olga S.</au><au>Tassou, Chrysoula</au><au>Ersbøll, Bjarne Kjaer</au><au>Carstensen, Jens Michael</au><au>Panagou, Efstathios Z.</au><au>Nychas, George-John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Multispectral Imaging for Spoilage Detection of Pork Meat</atitle><jtitle>Food and bioprocess technology</jtitle><stitle>Food Bioprocess Technol</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>6</volume><issue>9</issue><spage>2268</spage><epage>2279</epage><pages>2268-2279</pages><issn>1935-5130</issn><eissn>1935-5149</eissn><abstract>The quality of stored minced pork meat was monitored using a rapid multispectral imaging device to quantify the degree of spoilage. Bacterial counts of a total of 155 meat samples stored for up to 580 h have been measured using conventional laboratory methods. Meat samples were maintained under two different storage conditions: aerobic and modified atmosphere packages as well as under different temperatures. Besides bacterial counts, a sensory panel has judged the spoilage degree of all meat samples into one of three classes. Results showed that the multispectral imaging device was able to classify 76.13 % of the meat samples correctly according to the defined sensory scale. Furthermore, the multispectral camera device was able to predict total viable counts with a standard error of prediction of 7.47 %. It is concluded that there is a good possibility that a setup like the one investigated will be successful for the detection of spoilage degree in minced pork meat.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11947-012-0886-6</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1935-5130 |
ispartof | Food and bioprocess technology, 2013-09, Vol.6 (9), p.2268-2279 |
issn | 1935-5130 1935-5149 |
language | eng |
recordid | cdi_proquest_miscellaneous_1500769420 |
source | Springer Nature - Complete Springer Journals |
subjects | Agriculture Biotechnology Chemistry Chemistry and Materials Science Chemistry/Food Science Food Science Imaging Laboratory methods Meat Original Paper Pork Sensory evaluation Spoilage Standard error Storage conditions |
title | Using Multispectral Imaging for Spoilage Detection of Pork Meat |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Multispectral%20Imaging%20for%20Spoilage%20Detection%20of%20Pork%20Meat&rft.jtitle=Food%20and%20bioprocess%20technology&rft.au=Dissing,%20Bj%C3%B8rn%20Skovlund&rft.date=2013-09-01&rft.volume=6&rft.issue=9&rft.spage=2268&rft.epage=2279&rft.pages=2268-2279&rft.issn=1935-5130&rft.eissn=1935-5149&rft_id=info:doi/10.1007/s11947-012-0886-6&rft_dat=%3Cproquest_cross%3E1500769420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410775706&rft_id=info:pmid/&rfr_iscdi=true |