Asymptotic properties of switching diffusion epidemic model with varying population size

The purpose of this work is to investigate the asymptotic properties of a stochastic version of the classical SIS epidemic model with standard incidence and varying population size. The stochastic model studied here includes white vector noise and telegraph noise modeled by Markovian switching. We e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2013-08, Vol.219 (24), p.11134-11148
Hauptverfasser: Lahrouz, Aadil, Settati, Adel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11148
container_issue 24
container_start_page 11134
container_title Applied mathematics and computation
container_volume 219
creator Lahrouz, Aadil
Settati, Adel
description The purpose of this work is to investigate the asymptotic properties of a stochastic version of the classical SIS epidemic model with standard incidence and varying population size. The stochastic model studied here includes white vector noise and telegraph noise modeled by Markovian switching. We established conditions for extinction both in probability one and in pth moment. We also established the persistence of disease under different conditions on the intensities of noises and the parameters of the model. Furthermore, we showed the existence of a stationary distribution and derive expressions for its mean and variance. The presented results are demonstrated by numerical simulations.
doi_str_mv 10.1016/j.amc.2013.05.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500764344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300313005389</els_id><sourcerecordid>1500764344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-cfffa7e116b76ed1e1e5a59cbb0720b769c5b2096272eb0373b899e1682869283</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG89emmdNG3a4GlZ_IIFLwreQptO3Cztpibpiv56U9azp4HheYd3HkKuKWQUKL_dZc2gshwoy6DMgIoTsqB1xdKSF-KULAAETxkAOycX3u8AoOK0WJD3lf8exmCDUcno7IguGPSJ1Yn_MkFtzf4j6YzWkzd2n-BoOhwiOtgO-yQS2-TQuO-ZGu049U2YMW9-8JKc6ab3ePU3l-Tt4f51_ZRuXh6f16tNqhiDkCqtdVMhpbytOHYUKZZNKVTbQpVD3AlVtnksn1c5tsAq1tZCIOV1XnOR12xJbo53Y_vPCX2Qg_EK-77Zo528pOX8asGKIqL0iCpnvXeo5ejMEOtLCnK2KHcyWpSzRQmljBZj5u6YwfjDwaCTXhncK-yMQxVkZ80_6V-G1nuq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1500764344</pqid></control><display><type>article</type><title>Asymptotic properties of switching diffusion epidemic model with varying population size</title><source>Elsevier ScienceDirect Journals</source><creator>Lahrouz, Aadil ; Settati, Adel</creator><creatorcontrib>Lahrouz, Aadil ; Settati, Adel</creatorcontrib><description>The purpose of this work is to investigate the asymptotic properties of a stochastic version of the classical SIS epidemic model with standard incidence and varying population size. The stochastic model studied here includes white vector noise and telegraph noise modeled by Markovian switching. We established conditions for extinction both in probability one and in pth moment. We also established the persistence of disease under different conditions on the intensities of noises and the parameters of the model. Furthermore, we showed the existence of a stationary distribution and derive expressions for its mean and variance. The presented results are demonstrated by numerical simulations.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2013.05.019</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Extinction ; Markovian switching ; Stationary distribution ; Stochastic epidemic model ; Stochastic persistence</subject><ispartof>Applied mathematics and computation, 2013-08, Vol.219 (24), p.11134-11148</ispartof><rights>2013 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-cfffa7e116b76ed1e1e5a59cbb0720b769c5b2096272eb0373b899e1682869283</citedby><cites>FETCH-LOGICAL-c330t-cfffa7e116b76ed1e1e5a59cbb0720b769c5b2096272eb0373b899e1682869283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2013.05.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Lahrouz, Aadil</creatorcontrib><creatorcontrib>Settati, Adel</creatorcontrib><title>Asymptotic properties of switching diffusion epidemic model with varying population size</title><title>Applied mathematics and computation</title><description>The purpose of this work is to investigate the asymptotic properties of a stochastic version of the classical SIS epidemic model with standard incidence and varying population size. The stochastic model studied here includes white vector noise and telegraph noise modeled by Markovian switching. We established conditions for extinction both in probability one and in pth moment. We also established the persistence of disease under different conditions on the intensities of noises and the parameters of the model. Furthermore, we showed the existence of a stationary distribution and derive expressions for its mean and variance. The presented results are demonstrated by numerical simulations.</description><subject>Extinction</subject><subject>Markovian switching</subject><subject>Stationary distribution</subject><subject>Stochastic epidemic model</subject><subject>Stochastic persistence</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG89emmdNG3a4GlZ_IIFLwreQptO3Cztpibpiv56U9azp4HheYd3HkKuKWQUKL_dZc2gshwoy6DMgIoTsqB1xdKSF-KULAAETxkAOycX3u8AoOK0WJD3lf8exmCDUcno7IguGPSJ1Yn_MkFtzf4j6YzWkzd2n-BoOhwiOtgO-yQS2-TQuO-ZGu049U2YMW9-8JKc6ab3ePU3l-Tt4f51_ZRuXh6f16tNqhiDkCqtdVMhpbytOHYUKZZNKVTbQpVD3AlVtnksn1c5tsAq1tZCIOV1XnOR12xJbo53Y_vPCX2Qg_EK-77Zo528pOX8asGKIqL0iCpnvXeo5ejMEOtLCnK2KHcyWpSzRQmljBZj5u6YwfjDwaCTXhncK-yMQxVkZ80_6V-G1nuq</recordid><startdate>20130815</startdate><enddate>20130815</enddate><creator>Lahrouz, Aadil</creator><creator>Settati, Adel</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20130815</creationdate><title>Asymptotic properties of switching diffusion epidemic model with varying population size</title><author>Lahrouz, Aadil ; Settati, Adel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-cfffa7e116b76ed1e1e5a59cbb0720b769c5b2096272eb0373b899e1682869283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Extinction</topic><topic>Markovian switching</topic><topic>Stationary distribution</topic><topic>Stochastic epidemic model</topic><topic>Stochastic persistence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lahrouz, Aadil</creatorcontrib><creatorcontrib>Settati, Adel</creatorcontrib><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lahrouz, Aadil</au><au>Settati, Adel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic properties of switching diffusion epidemic model with varying population size</atitle><jtitle>Applied mathematics and computation</jtitle><date>2013-08-15</date><risdate>2013</risdate><volume>219</volume><issue>24</issue><spage>11134</spage><epage>11148</epage><pages>11134-11148</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>The purpose of this work is to investigate the asymptotic properties of a stochastic version of the classical SIS epidemic model with standard incidence and varying population size. The stochastic model studied here includes white vector noise and telegraph noise modeled by Markovian switching. We established conditions for extinction both in probability one and in pth moment. We also established the persistence of disease under different conditions on the intensities of noises and the parameters of the model. Furthermore, we showed the existence of a stationary distribution and derive expressions for its mean and variance. The presented results are demonstrated by numerical simulations.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2013.05.019</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2013-08, Vol.219 (24), p.11134-11148
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1500764344
source Elsevier ScienceDirect Journals
subjects Extinction
Markovian switching
Stationary distribution
Stochastic epidemic model
Stochastic persistence
title Asymptotic properties of switching diffusion epidemic model with varying population size
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20properties%20of%20switching%20diffusion%20epidemic%20model%20with%20varying%20population%20size&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Lahrouz,%20Aadil&rft.date=2013-08-15&rft.volume=219&rft.issue=24&rft.spage=11134&rft.epage=11148&rft.pages=11134-11148&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2013.05.019&rft_dat=%3Cproquest_cross%3E1500764344%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1500764344&rft_id=info:pmid/&rft_els_id=S0096300313005389&rfr_iscdi=true