Noise correction for HARDI and HYDI data obtained with multi-channel coils and Sum of Squares reconstruction: An anisotropic extension of the LMMSE

Abstract Parallel magnetic resonance imaging (MRI) yields noisy magnitude data, described in most cases as following a noncentral χ distribution when the signals received by the coils are combined as the sum of their squares. One well-known case of this noncentral χ noise model is the Rician model,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance imaging 2013-10, Vol.31 (8), p.1360-1371
Hauptverfasser: Brion, Véronique, Poupon, Cyril, Riff, Olivier, Aja-Fernández, Santiago, Tristán-Vega, Antonio, Mangin, Jean-François, Le Bihan, Denis, Poupon, Fabrice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1371
container_issue 8
container_start_page 1360
container_title Magnetic resonance imaging
container_volume 31
creator Brion, Véronique
Poupon, Cyril
Riff, Olivier
Aja-Fernández, Santiago
Tristán-Vega, Antonio
Mangin, Jean-François
Le Bihan, Denis
Poupon, Fabrice
description Abstract Parallel magnetic resonance imaging (MRI) yields noisy magnitude data, described in most cases as following a noncentral χ distribution when the signals received by the coils are combined as the sum of their squares. One well-known case of this noncentral χ noise model is the Rician model, but it is only valid in the case of single-channel acquisition. Although the use of parallel MRI is increasingly common, most of the correction methods still perform Rician noise removal, yielding an erroneous result due to an incorrect noise model. Moreover, the existence of noise correlations in phased array systems renders noise nonstationary and further modifies the noise description in parallel MRI. However, the noncentral χ model has been demonstrated to work as a good approximation as long as effective voxelwise parameters are used. A good correction step, adapted to the right noise model, is of paramount importance, especially when working with diffusion-weighted MR data, whose signal-to-noise ratio is low. In this paper, we present a noise removal technique designed to be fast enough for integration into a real-time reconstruction system, thus offering the convenience of obtaining corrected data almost instantaneously during the MRI scan. Our method employs the noncentral χ noise model and uses a simplified method to account for noise correlations; this leads to an efficient and rapid correction. The method consists of an anisotropic extension of the Linear Minimum Mean Square Error estimator (LMMSE) that is a far better edge-preserving method than the traditional LMMSE and addresses noncentral χ distributions along with empirically computed global effective parameters. The results on simulated and real data demonstrate that this anisotropic extended LMMSE outperforms the original LMMSE on images corrupted by noncentral χ noise. Moreover, in comparison with the existing LMMSE technique incorporating the estimation of voxelwise effective parameters, our method yields improved results.
doi_str_mv 10.1016/j.mri.2013.04.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500761791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0730725X13001367</els_id><sourcerecordid>1432075452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-cf6945a0bdcbc3de29d6d841fa0a0a621c7cdf9e15d3dac4464f52b0deadc7c13</originalsourceid><addsrcrecordid>eNqNks2KFDEUhYMoTtv6AG4kSzdV3lTqp0tBaOavB3oUbAVdhXRyi05blfQkKXWewxc2NT26cCGSRQI557twziXkOYOcAatf7fPBm7wAxnMoc4DiAZmxRcOzatGWD8kMGg5ZU1SfT8iTEPYAUBW8ekxOCl5XbVMvZuTnO2cCUuW8RxWNs7Rznq6WH86uqLSarr6kh5ZRUreN0ljU9LuJOzqMfTSZ2klrsU9204c7_WYcqOvo5maUHgNNUGdD9OMd-zVd2qQywUXvDkZR_BHRhmlq8sQd0vX19eb8KXnUyT7gs_t7Tj5dnH88XWXr95dXp8t1psqSxUx1dVtWErZabRXXWLS61ouSdRLSqQumGqW7FlmluZbJU5ddVWxBo9Tpi_E5eXnkHry7GTFEMZigsO-lRTcGwSqApmZN-x_SkhfQVGXKd07YUaq8C8FjJw7eDNLfCgZiqk3sRapNTLUJKEWqLXle3OPH7YD6j-N3T0nw5ijAlMc3g14EZdAq1GbqTWhn_ol_-5db9cYaJfuveIth70ZvU9CCiVAIEJtpb6a1YRwSpW74LzuKvvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1432075452</pqid></control><display><type>article</type><title>Noise correction for HARDI and HYDI data obtained with multi-channel coils and Sum of Squares reconstruction: An anisotropic extension of the LMMSE</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Brion, Véronique ; Poupon, Cyril ; Riff, Olivier ; Aja-Fernández, Santiago ; Tristán-Vega, Antonio ; Mangin, Jean-François ; Le Bihan, Denis ; Poupon, Fabrice</creator><creatorcontrib>Brion, Véronique ; Poupon, Cyril ; Riff, Olivier ; Aja-Fernández, Santiago ; Tristán-Vega, Antonio ; Mangin, Jean-François ; Le Bihan, Denis ; Poupon, Fabrice</creatorcontrib><description>Abstract Parallel magnetic resonance imaging (MRI) yields noisy magnitude data, described in most cases as following a noncentral χ distribution when the signals received by the coils are combined as the sum of their squares. One well-known case of this noncentral χ noise model is the Rician model, but it is only valid in the case of single-channel acquisition. Although the use of parallel MRI is increasingly common, most of the correction methods still perform Rician noise removal, yielding an erroneous result due to an incorrect noise model. Moreover, the existence of noise correlations in phased array systems renders noise nonstationary and further modifies the noise description in parallel MRI. However, the noncentral χ model has been demonstrated to work as a good approximation as long as effective voxelwise parameters are used. A good correction step, adapted to the right noise model, is of paramount importance, especially when working with diffusion-weighted MR data, whose signal-to-noise ratio is low. In this paper, we present a noise removal technique designed to be fast enough for integration into a real-time reconstruction system, thus offering the convenience of obtaining corrected data almost instantaneously during the MRI scan. Our method employs the noncentral χ noise model and uses a simplified method to account for noise correlations; this leads to an efficient and rapid correction. The method consists of an anisotropic extension of the Linear Minimum Mean Square Error estimator (LMMSE) that is a far better edge-preserving method than the traditional LMMSE and addresses noncentral χ distributions along with empirically computed global effective parameters. The results on simulated and real data demonstrate that this anisotropic extended LMMSE outperforms the original LMMSE on images corrupted by noncentral χ noise. Moreover, in comparison with the existing LMMSE technique incorporating the estimation of voxelwise effective parameters, our method yields improved results.</description><identifier>ISSN: 0730-725X</identifier><identifier>EISSN: 1873-5894</identifier><identifier>DOI: 10.1016/j.mri.2013.04.002</identifier><identifier>PMID: 23659768</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Algorithms ; Anisotropy ; Brain - cytology ; Data Interpretation, Statistical ; Diffusion Tensor Imaging - instrumentation ; Diffusion Tensor Imaging - methods ; Equipment Design ; Equipment Failure Analysis ; HARDI ; Humans ; HYDI ; Image Enhancement - instrumentation ; Image Enhancement - methods ; Least-Squares Analysis ; LMMSE ; Nerve Fibers, Myelinated - ultrastructure ; Noise correction ; Noncentral χ ; Parallel MRI ; Radiology ; Real-time ; Reproducibility of Results ; Sensitivity and Specificity ; Signal-To-Noise Ratio</subject><ispartof>Magnetic resonance imaging, 2013-10, Vol.31 (8), p.1360-1371</ispartof><rights>Elsevier Inc.</rights><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-cf6945a0bdcbc3de29d6d841fa0a0a621c7cdf9e15d3dac4464f52b0deadc7c13</citedby><cites>FETCH-LOGICAL-c441t-cf6945a0bdcbc3de29d6d841fa0a0a621c7cdf9e15d3dac4464f52b0deadc7c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0730725X13001367$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23659768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brion, Véronique</creatorcontrib><creatorcontrib>Poupon, Cyril</creatorcontrib><creatorcontrib>Riff, Olivier</creatorcontrib><creatorcontrib>Aja-Fernández, Santiago</creatorcontrib><creatorcontrib>Tristán-Vega, Antonio</creatorcontrib><creatorcontrib>Mangin, Jean-François</creatorcontrib><creatorcontrib>Le Bihan, Denis</creatorcontrib><creatorcontrib>Poupon, Fabrice</creatorcontrib><title>Noise correction for HARDI and HYDI data obtained with multi-channel coils and Sum of Squares reconstruction: An anisotropic extension of the LMMSE</title><title>Magnetic resonance imaging</title><addtitle>Magn Reson Imaging</addtitle><description>Abstract Parallel magnetic resonance imaging (MRI) yields noisy magnitude data, described in most cases as following a noncentral χ distribution when the signals received by the coils are combined as the sum of their squares. One well-known case of this noncentral χ noise model is the Rician model, but it is only valid in the case of single-channel acquisition. Although the use of parallel MRI is increasingly common, most of the correction methods still perform Rician noise removal, yielding an erroneous result due to an incorrect noise model. Moreover, the existence of noise correlations in phased array systems renders noise nonstationary and further modifies the noise description in parallel MRI. However, the noncentral χ model has been demonstrated to work as a good approximation as long as effective voxelwise parameters are used. A good correction step, adapted to the right noise model, is of paramount importance, especially when working with diffusion-weighted MR data, whose signal-to-noise ratio is low. In this paper, we present a noise removal technique designed to be fast enough for integration into a real-time reconstruction system, thus offering the convenience of obtaining corrected data almost instantaneously during the MRI scan. Our method employs the noncentral χ noise model and uses a simplified method to account for noise correlations; this leads to an efficient and rapid correction. The method consists of an anisotropic extension of the Linear Minimum Mean Square Error estimator (LMMSE) that is a far better edge-preserving method than the traditional LMMSE and addresses noncentral χ distributions along with empirically computed global effective parameters. The results on simulated and real data demonstrate that this anisotropic extended LMMSE outperforms the original LMMSE on images corrupted by noncentral χ noise. Moreover, in comparison with the existing LMMSE technique incorporating the estimation of voxelwise effective parameters, our method yields improved results.</description><subject>Algorithms</subject><subject>Anisotropy</subject><subject>Brain - cytology</subject><subject>Data Interpretation, Statistical</subject><subject>Diffusion Tensor Imaging - instrumentation</subject><subject>Diffusion Tensor Imaging - methods</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>HARDI</subject><subject>Humans</subject><subject>HYDI</subject><subject>Image Enhancement - instrumentation</subject><subject>Image Enhancement - methods</subject><subject>Least-Squares Analysis</subject><subject>LMMSE</subject><subject>Nerve Fibers, Myelinated - ultrastructure</subject><subject>Noise correction</subject><subject>Noncentral χ</subject><subject>Parallel MRI</subject><subject>Radiology</subject><subject>Real-time</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Signal-To-Noise Ratio</subject><issn>0730-725X</issn><issn>1873-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks2KFDEUhYMoTtv6AG4kSzdV3lTqp0tBaOavB3oUbAVdhXRyi05blfQkKXWewxc2NT26cCGSRQI557twziXkOYOcAatf7fPBm7wAxnMoc4DiAZmxRcOzatGWD8kMGg5ZU1SfT8iTEPYAUBW8ekxOCl5XbVMvZuTnO2cCUuW8RxWNs7Rznq6WH86uqLSarr6kh5ZRUreN0ljU9LuJOzqMfTSZ2klrsU9204c7_WYcqOvo5maUHgNNUGdD9OMd-zVd2qQywUXvDkZR_BHRhmlq8sQd0vX19eb8KXnUyT7gs_t7Tj5dnH88XWXr95dXp8t1psqSxUx1dVtWErZabRXXWLS61ouSdRLSqQumGqW7FlmluZbJU5ddVWxBo9Tpi_E5eXnkHry7GTFEMZigsO-lRTcGwSqApmZN-x_SkhfQVGXKd07YUaq8C8FjJw7eDNLfCgZiqk3sRapNTLUJKEWqLXle3OPH7YD6j-N3T0nw5ijAlMc3g14EZdAq1GbqTWhn_ol_-5db9cYaJfuveIth70ZvU9CCiVAIEJtpb6a1YRwSpW74LzuKvvg</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Brion, Véronique</creator><creator>Poupon, Cyril</creator><creator>Riff, Olivier</creator><creator>Aja-Fernández, Santiago</creator><creator>Tristán-Vega, Antonio</creator><creator>Mangin, Jean-François</creator><creator>Le Bihan, Denis</creator><creator>Poupon, Fabrice</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20131001</creationdate><title>Noise correction for HARDI and HYDI data obtained with multi-channel coils and Sum of Squares reconstruction: An anisotropic extension of the LMMSE</title><author>Brion, Véronique ; Poupon, Cyril ; Riff, Olivier ; Aja-Fernández, Santiago ; Tristán-Vega, Antonio ; Mangin, Jean-François ; Le Bihan, Denis ; Poupon, Fabrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-cf6945a0bdcbc3de29d6d841fa0a0a621c7cdf9e15d3dac4464f52b0deadc7c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Anisotropy</topic><topic>Brain - cytology</topic><topic>Data Interpretation, Statistical</topic><topic>Diffusion Tensor Imaging - instrumentation</topic><topic>Diffusion Tensor Imaging - methods</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>HARDI</topic><topic>Humans</topic><topic>HYDI</topic><topic>Image Enhancement - instrumentation</topic><topic>Image Enhancement - methods</topic><topic>Least-Squares Analysis</topic><topic>LMMSE</topic><topic>Nerve Fibers, Myelinated - ultrastructure</topic><topic>Noise correction</topic><topic>Noncentral χ</topic><topic>Parallel MRI</topic><topic>Radiology</topic><topic>Real-time</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Signal-To-Noise Ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brion, Véronique</creatorcontrib><creatorcontrib>Poupon, Cyril</creatorcontrib><creatorcontrib>Riff, Olivier</creatorcontrib><creatorcontrib>Aja-Fernández, Santiago</creatorcontrib><creatorcontrib>Tristán-Vega, Antonio</creatorcontrib><creatorcontrib>Mangin, Jean-François</creatorcontrib><creatorcontrib>Le Bihan, Denis</creatorcontrib><creatorcontrib>Poupon, Fabrice</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brion, Véronique</au><au>Poupon, Cyril</au><au>Riff, Olivier</au><au>Aja-Fernández, Santiago</au><au>Tristán-Vega, Antonio</au><au>Mangin, Jean-François</au><au>Le Bihan, Denis</au><au>Poupon, Fabrice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise correction for HARDI and HYDI data obtained with multi-channel coils and Sum of Squares reconstruction: An anisotropic extension of the LMMSE</atitle><jtitle>Magnetic resonance imaging</jtitle><addtitle>Magn Reson Imaging</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>31</volume><issue>8</issue><spage>1360</spage><epage>1371</epage><pages>1360-1371</pages><issn>0730-725X</issn><eissn>1873-5894</eissn><abstract>Abstract Parallel magnetic resonance imaging (MRI) yields noisy magnitude data, described in most cases as following a noncentral χ distribution when the signals received by the coils are combined as the sum of their squares. One well-known case of this noncentral χ noise model is the Rician model, but it is only valid in the case of single-channel acquisition. Although the use of parallel MRI is increasingly common, most of the correction methods still perform Rician noise removal, yielding an erroneous result due to an incorrect noise model. Moreover, the existence of noise correlations in phased array systems renders noise nonstationary and further modifies the noise description in parallel MRI. However, the noncentral χ model has been demonstrated to work as a good approximation as long as effective voxelwise parameters are used. A good correction step, adapted to the right noise model, is of paramount importance, especially when working with diffusion-weighted MR data, whose signal-to-noise ratio is low. In this paper, we present a noise removal technique designed to be fast enough for integration into a real-time reconstruction system, thus offering the convenience of obtaining corrected data almost instantaneously during the MRI scan. Our method employs the noncentral χ noise model and uses a simplified method to account for noise correlations; this leads to an efficient and rapid correction. The method consists of an anisotropic extension of the Linear Minimum Mean Square Error estimator (LMMSE) that is a far better edge-preserving method than the traditional LMMSE and addresses noncentral χ distributions along with empirically computed global effective parameters. The results on simulated and real data demonstrate that this anisotropic extended LMMSE outperforms the original LMMSE on images corrupted by noncentral χ noise. Moreover, in comparison with the existing LMMSE technique incorporating the estimation of voxelwise effective parameters, our method yields improved results.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>23659768</pmid><doi>10.1016/j.mri.2013.04.002</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0730-725X
ispartof Magnetic resonance imaging, 2013-10, Vol.31 (8), p.1360-1371
issn 0730-725X
1873-5894
language eng
recordid cdi_proquest_miscellaneous_1500761791
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Algorithms
Anisotropy
Brain - cytology
Data Interpretation, Statistical
Diffusion Tensor Imaging - instrumentation
Diffusion Tensor Imaging - methods
Equipment Design
Equipment Failure Analysis
HARDI
Humans
HYDI
Image Enhancement - instrumentation
Image Enhancement - methods
Least-Squares Analysis
LMMSE
Nerve Fibers, Myelinated - ultrastructure
Noise correction
Noncentral χ
Parallel MRI
Radiology
Real-time
Reproducibility of Results
Sensitivity and Specificity
Signal-To-Noise Ratio
title Noise correction for HARDI and HYDI data obtained with multi-channel coils and Sum of Squares reconstruction: An anisotropic extension of the LMMSE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T13%3A32%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise%20correction%20for%20HARDI%20and%20HYDI%20data%20obtained%20with%20multi-channel%20coils%20and%20Sum%20of%20Squares%20reconstruction:%20An%20anisotropic%20extension%20of%20the%20LMMSE&rft.jtitle=Magnetic%20resonance%20imaging&rft.au=Brion,%20V%C3%A9ronique&rft.date=2013-10-01&rft.volume=31&rft.issue=8&rft.spage=1360&rft.epage=1371&rft.pages=1360-1371&rft.issn=0730-725X&rft.eissn=1873-5894&rft_id=info:doi/10.1016/j.mri.2013.04.002&rft_dat=%3Cproquest_cross%3E1432075452%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1432075452&rft_id=info:pmid/23659768&rft_els_id=S0730725X13001367&rfr_iscdi=true