Integrative analysis of the connectivity and gene expression atlases in the mouse brain
Brain function is the result of interneuron signal transmission controlled by the fundamental biochemistry of each neuron. The biochemical content of a neuron is in turn determined by spatiotemporal gene expression and regulation encoded into the genomic regulatory networks. It is thus of particular...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2014-01, Vol.84, p.245-253 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 253 |
---|---|
container_issue | |
container_start_page | 245 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 84 |
creator | Ji, Shuiwang Fakhry, Ahmed Deng, Houtao |
description | Brain function is the result of interneuron signal transmission controlled by the fundamental biochemistry of each neuron. The biochemical content of a neuron is in turn determined by spatiotemporal gene expression and regulation encoded into the genomic regulatory networks. It is thus of particular interest to elucidate the relationship between gene expression patterns and connectivity in the brain. However, systematic studies of this relationship in a single mammalian brain are lacking to date. Here, we investigate this relationship in the mouse brain using the Allen Brain Atlas data. We employ computational models for predicting brain connectivity from gene expression data. In addition to giving competitive predictive performance, these models can rank the genes according to their predictive power. We show that gene expression is predictive of connectivity in the mouse brain when the connectivity signals are discretized. When the expression patterns of 4084 genes are used, we obtain a predictive accuracy of 93%. Our results also show that a small number of genes can almost give the full predictive power of using thousands of genes. We can achieve a prediction accuracy of 91% by using only 25 genes. Gene ontology analysis of the highly ranked genes shows that they are enriched for connectivity related processes.
•We study the correlation between gene expression and brain connectivity.•We predict connectivity in the mouse brain using ensemble methods.•Gene expressions can predict brain connectivity.•We identify genes that generate brain connectivity.•Gene expressions are correlated with brain connectivity. |
doi_str_mv | 10.1016/j.neuroimage.2013.08.049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500760199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811913009129</els_id><sourcerecordid>1500760199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-6e612da8c4a7efc6c6c01c4138a8b2a5eefdaf6b324cf006e3553a50fcf7ecbf3</originalsourceid><addsrcrecordid>eNqFkUuLFDEQgBtR3HX1L0hABC_dVjqPTo66-FhY8KJ4DOl0ZczQk4xJ9-L8ezPO6IKXJYcK1FcP6msaQqGjQOXbbRdxzSns7Aa7HijrQHXA9aPmkoIWrRZD__j4F6xVlOqL5lkpWwDQlKunzUXPAbjU8rL5fhMX3GS7hDskNtr5UEIhyZPlBxKXYkRXU2E51ORENhiR4K99xlJCisQusy1YSIh_-F1aC5Ix2xCfN0-8nQu-OMer5tvHD1-vP7e3Xz7dXL-7bR2XYmklStpPVjluB_RO1gfUccqUVWNvBaKfrJcj67nzABKZEMwK8M4P6EbPrpo3p777nH6uWBazC8XhPNuIdRtDBcAggWr9MMol55oxRiv66j90m9Zcr3NsyAdGOReqUupEuZxKyejNPlcl-WAomKMnszX3nszRkwFlqqda-vI8YB13OP0r_CumAq_PgC3Ozj7b6EK551SvB6Ggcu9PHNYj3wXMpriA0eEUclVnphQe3uY3VAy29Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547314458</pqid></control><display><type>article</type><title>Integrative analysis of the connectivity and gene expression atlases in the mouse brain</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ji, Shuiwang ; Fakhry, Ahmed ; Deng, Houtao</creator><creatorcontrib>Ji, Shuiwang ; Fakhry, Ahmed ; Deng, Houtao</creatorcontrib><description>Brain function is the result of interneuron signal transmission controlled by the fundamental biochemistry of each neuron. The biochemical content of a neuron is in turn determined by spatiotemporal gene expression and regulation encoded into the genomic regulatory networks. It is thus of particular interest to elucidate the relationship between gene expression patterns and connectivity in the brain. However, systematic studies of this relationship in a single mammalian brain are lacking to date. Here, we investigate this relationship in the mouse brain using the Allen Brain Atlas data. We employ computational models for predicting brain connectivity from gene expression data. In addition to giving competitive predictive performance, these models can rank the genes according to their predictive power. We show that gene expression is predictive of connectivity in the mouse brain when the connectivity signals are discretized. When the expression patterns of 4084 genes are used, we obtain a predictive accuracy of 93%. Our results also show that a small number of genes can almost give the full predictive power of using thousands of genes. We can achieve a prediction accuracy of 91% by using only 25 genes. Gene ontology analysis of the highly ranked genes shows that they are enriched for connectivity related processes.
•We study the correlation between gene expression and brain connectivity.•We predict connectivity in the mouse brain using ensemble methods.•Gene expressions can predict brain connectivity.•We identify genes that generate brain connectivity.•Gene expressions are correlated with brain connectivity.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2013.08.049</identifier><identifier>PMID: 24004696</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Animals ; Biological and medical sciences ; Brain - anatomy & histology ; Brain - metabolism ; Brain connectivity ; Brain research ; Computer Simulation ; Connectome - methods ; Correlation ; Cytoplasm ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene expression patterns ; Gene Expression Profiling - methods ; Gene Expression Regulation - physiology ; Genomes ; Investigations ; Male ; Mice ; Models, Anatomic ; Models, Neurological ; Nerve Tissue Proteins - metabolism ; Neurons ; Ontology ; Prediction ; Rodents ; Sparse models ; Systems Integration ; Tissue Distribution ; Vertebrates: nervous system and sense organs</subject><ispartof>NeuroImage (Orlando, Fla.), 2014-01, Vol.84, p.245-253</ispartof><rights>2013 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>2013 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jan 1, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-6e612da8c4a7efc6c6c01c4138a8b2a5eefdaf6b324cf006e3553a50fcf7ecbf3</citedby><cites>FETCH-LOGICAL-c465t-6e612da8c4a7efc6c6c01c4138a8b2a5eefdaf6b324cf006e3553a50fcf7ecbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811913009129$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28297580$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24004696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Shuiwang</creatorcontrib><creatorcontrib>Fakhry, Ahmed</creatorcontrib><creatorcontrib>Deng, Houtao</creatorcontrib><title>Integrative analysis of the connectivity and gene expression atlases in the mouse brain</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Brain function is the result of interneuron signal transmission controlled by the fundamental biochemistry of each neuron. The biochemical content of a neuron is in turn determined by spatiotemporal gene expression and regulation encoded into the genomic regulatory networks. It is thus of particular interest to elucidate the relationship between gene expression patterns and connectivity in the brain. However, systematic studies of this relationship in a single mammalian brain are lacking to date. Here, we investigate this relationship in the mouse brain using the Allen Brain Atlas data. We employ computational models for predicting brain connectivity from gene expression data. In addition to giving competitive predictive performance, these models can rank the genes according to their predictive power. We show that gene expression is predictive of connectivity in the mouse brain when the connectivity signals are discretized. When the expression patterns of 4084 genes are used, we obtain a predictive accuracy of 93%. Our results also show that a small number of genes can almost give the full predictive power of using thousands of genes. We can achieve a prediction accuracy of 91% by using only 25 genes. Gene ontology analysis of the highly ranked genes shows that they are enriched for connectivity related processes.
•We study the correlation between gene expression and brain connectivity.•We predict connectivity in the mouse brain using ensemble methods.•Gene expressions can predict brain connectivity.•We identify genes that generate brain connectivity.•Gene expressions are correlated with brain connectivity.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Brain - anatomy & histology</subject><subject>Brain - metabolism</subject><subject>Brain connectivity</subject><subject>Brain research</subject><subject>Computer Simulation</subject><subject>Connectome - methods</subject><subject>Correlation</subject><subject>Cytoplasm</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene expression patterns</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation - physiology</subject><subject>Genomes</subject><subject>Investigations</subject><subject>Male</subject><subject>Mice</subject><subject>Models, Anatomic</subject><subject>Models, Neurological</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurons</subject><subject>Ontology</subject><subject>Prediction</subject><subject>Rodents</subject><subject>Sparse models</subject><subject>Systems Integration</subject><subject>Tissue Distribution</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkUuLFDEQgBtR3HX1L0hABC_dVjqPTo66-FhY8KJ4DOl0ZczQk4xJ9-L8ezPO6IKXJYcK1FcP6msaQqGjQOXbbRdxzSns7Aa7HijrQHXA9aPmkoIWrRZD__j4F6xVlOqL5lkpWwDQlKunzUXPAbjU8rL5fhMX3GS7hDskNtr5UEIhyZPlBxKXYkRXU2E51ORENhiR4K99xlJCisQusy1YSIh_-F1aC5Ix2xCfN0-8nQu-OMer5tvHD1-vP7e3Xz7dXL-7bR2XYmklStpPVjluB_RO1gfUccqUVWNvBaKfrJcj67nzABKZEMwK8M4P6EbPrpo3p777nH6uWBazC8XhPNuIdRtDBcAggWr9MMol55oxRiv66j90m9Zcr3NsyAdGOReqUupEuZxKyejNPlcl-WAomKMnszX3nszRkwFlqqda-vI8YB13OP0r_CumAq_PgC3Ozj7b6EK551SvB6Ggcu9PHNYj3wXMpriA0eEUclVnphQe3uY3VAy29Q</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Ji, Shuiwang</creator><creator>Fakhry, Ahmed</creator><creator>Deng, Houtao</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20140101</creationdate><title>Integrative analysis of the connectivity and gene expression atlases in the mouse brain</title><author>Ji, Shuiwang ; Fakhry, Ahmed ; Deng, Houtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-6e612da8c4a7efc6c6c01c4138a8b2a5eefdaf6b324cf006e3553a50fcf7ecbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Brain - anatomy & histology</topic><topic>Brain - metabolism</topic><topic>Brain connectivity</topic><topic>Brain research</topic><topic>Computer Simulation</topic><topic>Connectome - methods</topic><topic>Correlation</topic><topic>Cytoplasm</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene expression patterns</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation - physiology</topic><topic>Genomes</topic><topic>Investigations</topic><topic>Male</topic><topic>Mice</topic><topic>Models, Anatomic</topic><topic>Models, Neurological</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurons</topic><topic>Ontology</topic><topic>Prediction</topic><topic>Rodents</topic><topic>Sparse models</topic><topic>Systems Integration</topic><topic>Tissue Distribution</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Shuiwang</creatorcontrib><creatorcontrib>Fakhry, Ahmed</creatorcontrib><creatorcontrib>Deng, Houtao</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Shuiwang</au><au>Fakhry, Ahmed</au><au>Deng, Houtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrative analysis of the connectivity and gene expression atlases in the mouse brain</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>84</volume><spage>245</spage><epage>253</epage><pages>245-253</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Brain function is the result of interneuron signal transmission controlled by the fundamental biochemistry of each neuron. The biochemical content of a neuron is in turn determined by spatiotemporal gene expression and regulation encoded into the genomic regulatory networks. It is thus of particular interest to elucidate the relationship between gene expression patterns and connectivity in the brain. However, systematic studies of this relationship in a single mammalian brain are lacking to date. Here, we investigate this relationship in the mouse brain using the Allen Brain Atlas data. We employ computational models for predicting brain connectivity from gene expression data. In addition to giving competitive predictive performance, these models can rank the genes according to their predictive power. We show that gene expression is predictive of connectivity in the mouse brain when the connectivity signals are discretized. When the expression patterns of 4084 genes are used, we obtain a predictive accuracy of 93%. Our results also show that a small number of genes can almost give the full predictive power of using thousands of genes. We can achieve a prediction accuracy of 91% by using only 25 genes. Gene ontology analysis of the highly ranked genes shows that they are enriched for connectivity related processes.
•We study the correlation between gene expression and brain connectivity.•We predict connectivity in the mouse brain using ensemble methods.•Gene expressions can predict brain connectivity.•We identify genes that generate brain connectivity.•Gene expressions are correlated with brain connectivity.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>24004696</pmid><doi>10.1016/j.neuroimage.2013.08.049</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2014-01, Vol.84, p.245-253 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_1500760199 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Biological and medical sciences Brain - anatomy & histology Brain - metabolism Brain connectivity Brain research Computer Simulation Connectome - methods Correlation Cytoplasm Fundamental and applied biological sciences. Psychology Gene expression Gene expression patterns Gene Expression Profiling - methods Gene Expression Regulation - physiology Genomes Investigations Male Mice Models, Anatomic Models, Neurological Nerve Tissue Proteins - metabolism Neurons Ontology Prediction Rodents Sparse models Systems Integration Tissue Distribution Vertebrates: nervous system and sense organs |
title | Integrative analysis of the connectivity and gene expression atlases in the mouse brain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrative%20analysis%20of%20the%20connectivity%20and%20gene%20expression%20atlases%20in%20the%20mouse%20brain&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Ji,%20Shuiwang&rft.date=2014-01-01&rft.volume=84&rft.spage=245&rft.epage=253&rft.pages=245-253&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2013.08.049&rft_dat=%3Cproquest_cross%3E1500760199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547314458&rft_id=info:pmid/24004696&rft_els_id=S1053811913009129&rfr_iscdi=true |