Integrative analysis of the connectivity and gene expression atlases in the mouse brain

Brain function is the result of interneuron signal transmission controlled by the fundamental biochemistry of each neuron. The biochemical content of a neuron is in turn determined by spatiotemporal gene expression and regulation encoded into the genomic regulatory networks. It is thus of particular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2014-01, Vol.84, p.245-253
Hauptverfasser: Ji, Shuiwang, Fakhry, Ahmed, Deng, Houtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 253
container_issue
container_start_page 245
container_title NeuroImage (Orlando, Fla.)
container_volume 84
creator Ji, Shuiwang
Fakhry, Ahmed
Deng, Houtao
description Brain function is the result of interneuron signal transmission controlled by the fundamental biochemistry of each neuron. The biochemical content of a neuron is in turn determined by spatiotemporal gene expression and regulation encoded into the genomic regulatory networks. It is thus of particular interest to elucidate the relationship between gene expression patterns and connectivity in the brain. However, systematic studies of this relationship in a single mammalian brain are lacking to date. Here, we investigate this relationship in the mouse brain using the Allen Brain Atlas data. We employ computational models for predicting brain connectivity from gene expression data. In addition to giving competitive predictive performance, these models can rank the genes according to their predictive power. We show that gene expression is predictive of connectivity in the mouse brain when the connectivity signals are discretized. When the expression patterns of 4084 genes are used, we obtain a predictive accuracy of 93%. Our results also show that a small number of genes can almost give the full predictive power of using thousands of genes. We can achieve a prediction accuracy of 91% by using only 25 genes. Gene ontology analysis of the highly ranked genes shows that they are enriched for connectivity related processes. •We study the correlation between gene expression and brain connectivity.•We predict connectivity in the mouse brain using ensemble methods.•Gene expressions can predict brain connectivity.•We identify genes that generate brain connectivity.•Gene expressions are correlated with brain connectivity.
doi_str_mv 10.1016/j.neuroimage.2013.08.049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1500760199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811913009129</els_id><sourcerecordid>1500760199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-6e612da8c4a7efc6c6c01c4138a8b2a5eefdaf6b324cf006e3553a50fcf7ecbf3</originalsourceid><addsrcrecordid>eNqFkUuLFDEQgBtR3HX1L0hABC_dVjqPTo66-FhY8KJ4DOl0ZczQk4xJ9-L8ezPO6IKXJYcK1FcP6msaQqGjQOXbbRdxzSns7Aa7HijrQHXA9aPmkoIWrRZD__j4F6xVlOqL5lkpWwDQlKunzUXPAbjU8rL5fhMX3GS7hDskNtr5UEIhyZPlBxKXYkRXU2E51ORENhiR4K99xlJCisQusy1YSIh_-F1aC5Ix2xCfN0-8nQu-OMer5tvHD1-vP7e3Xz7dXL-7bR2XYmklStpPVjluB_RO1gfUccqUVWNvBaKfrJcj67nzABKZEMwK8M4P6EbPrpo3p777nH6uWBazC8XhPNuIdRtDBcAggWr9MMol55oxRiv66j90m9Zcr3NsyAdGOReqUupEuZxKyejNPlcl-WAomKMnszX3nszRkwFlqqda-vI8YB13OP0r_CumAq_PgC3Ozj7b6EK551SvB6Ggcu9PHNYj3wXMpriA0eEUclVnphQe3uY3VAy29Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547314458</pqid></control><display><type>article</type><title>Integrative analysis of the connectivity and gene expression atlases in the mouse brain</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ji, Shuiwang ; Fakhry, Ahmed ; Deng, Houtao</creator><creatorcontrib>Ji, Shuiwang ; Fakhry, Ahmed ; Deng, Houtao</creatorcontrib><description>Brain function is the result of interneuron signal transmission controlled by the fundamental biochemistry of each neuron. The biochemical content of a neuron is in turn determined by spatiotemporal gene expression and regulation encoded into the genomic regulatory networks. It is thus of particular interest to elucidate the relationship between gene expression patterns and connectivity in the brain. However, systematic studies of this relationship in a single mammalian brain are lacking to date. Here, we investigate this relationship in the mouse brain using the Allen Brain Atlas data. We employ computational models for predicting brain connectivity from gene expression data. In addition to giving competitive predictive performance, these models can rank the genes according to their predictive power. We show that gene expression is predictive of connectivity in the mouse brain when the connectivity signals are discretized. When the expression patterns of 4084 genes are used, we obtain a predictive accuracy of 93%. Our results also show that a small number of genes can almost give the full predictive power of using thousands of genes. We can achieve a prediction accuracy of 91% by using only 25 genes. Gene ontology analysis of the highly ranked genes shows that they are enriched for connectivity related processes. •We study the correlation between gene expression and brain connectivity.•We predict connectivity in the mouse brain using ensemble methods.•Gene expressions can predict brain connectivity.•We identify genes that generate brain connectivity.•Gene expressions are correlated with brain connectivity.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2013.08.049</identifier><identifier>PMID: 24004696</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Animals ; Biological and medical sciences ; Brain - anatomy &amp; histology ; Brain - metabolism ; Brain connectivity ; Brain research ; Computer Simulation ; Connectome - methods ; Correlation ; Cytoplasm ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene expression patterns ; Gene Expression Profiling - methods ; Gene Expression Regulation - physiology ; Genomes ; Investigations ; Male ; Mice ; Models, Anatomic ; Models, Neurological ; Nerve Tissue Proteins - metabolism ; Neurons ; Ontology ; Prediction ; Rodents ; Sparse models ; Systems Integration ; Tissue Distribution ; Vertebrates: nervous system and sense organs</subject><ispartof>NeuroImage (Orlando, Fla.), 2014-01, Vol.84, p.245-253</ispartof><rights>2013 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>2013 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jan 1, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-6e612da8c4a7efc6c6c01c4138a8b2a5eefdaf6b324cf006e3553a50fcf7ecbf3</citedby><cites>FETCH-LOGICAL-c465t-6e612da8c4a7efc6c6c01c4138a8b2a5eefdaf6b324cf006e3553a50fcf7ecbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811913009129$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28297580$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24004696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Shuiwang</creatorcontrib><creatorcontrib>Fakhry, Ahmed</creatorcontrib><creatorcontrib>Deng, Houtao</creatorcontrib><title>Integrative analysis of the connectivity and gene expression atlases in the mouse brain</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Brain function is the result of interneuron signal transmission controlled by the fundamental biochemistry of each neuron. The biochemical content of a neuron is in turn determined by spatiotemporal gene expression and regulation encoded into the genomic regulatory networks. It is thus of particular interest to elucidate the relationship between gene expression patterns and connectivity in the brain. However, systematic studies of this relationship in a single mammalian brain are lacking to date. Here, we investigate this relationship in the mouse brain using the Allen Brain Atlas data. We employ computational models for predicting brain connectivity from gene expression data. In addition to giving competitive predictive performance, these models can rank the genes according to their predictive power. We show that gene expression is predictive of connectivity in the mouse brain when the connectivity signals are discretized. When the expression patterns of 4084 genes are used, we obtain a predictive accuracy of 93%. Our results also show that a small number of genes can almost give the full predictive power of using thousands of genes. We can achieve a prediction accuracy of 91% by using only 25 genes. Gene ontology analysis of the highly ranked genes shows that they are enriched for connectivity related processes. •We study the correlation between gene expression and brain connectivity.•We predict connectivity in the mouse brain using ensemble methods.•Gene expressions can predict brain connectivity.•We identify genes that generate brain connectivity.•Gene expressions are correlated with brain connectivity.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain - metabolism</subject><subject>Brain connectivity</subject><subject>Brain research</subject><subject>Computer Simulation</subject><subject>Connectome - methods</subject><subject>Correlation</subject><subject>Cytoplasm</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene expression patterns</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation - physiology</subject><subject>Genomes</subject><subject>Investigations</subject><subject>Male</subject><subject>Mice</subject><subject>Models, Anatomic</subject><subject>Models, Neurological</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurons</subject><subject>Ontology</subject><subject>Prediction</subject><subject>Rodents</subject><subject>Sparse models</subject><subject>Systems Integration</subject><subject>Tissue Distribution</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkUuLFDEQgBtR3HX1L0hABC_dVjqPTo66-FhY8KJ4DOl0ZczQk4xJ9-L8ezPO6IKXJYcK1FcP6msaQqGjQOXbbRdxzSns7Aa7HijrQHXA9aPmkoIWrRZD__j4F6xVlOqL5lkpWwDQlKunzUXPAbjU8rL5fhMX3GS7hDskNtr5UEIhyZPlBxKXYkRXU2E51ORENhiR4K99xlJCisQusy1YSIh_-F1aC5Ix2xCfN0-8nQu-OMer5tvHD1-vP7e3Xz7dXL-7bR2XYmklStpPVjluB_RO1gfUccqUVWNvBaKfrJcj67nzABKZEMwK8M4P6EbPrpo3p777nH6uWBazC8XhPNuIdRtDBcAggWr9MMol55oxRiv66j90m9Zcr3NsyAdGOReqUupEuZxKyejNPlcl-WAomKMnszX3nszRkwFlqqda-vI8YB13OP0r_CumAq_PgC3Ozj7b6EK551SvB6Ggcu9PHNYj3wXMpriA0eEUclVnphQe3uY3VAy29Q</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Ji, Shuiwang</creator><creator>Fakhry, Ahmed</creator><creator>Deng, Houtao</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20140101</creationdate><title>Integrative analysis of the connectivity and gene expression atlases in the mouse brain</title><author>Ji, Shuiwang ; Fakhry, Ahmed ; Deng, Houtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-6e612da8c4a7efc6c6c01c4138a8b2a5eefdaf6b324cf006e3553a50fcf7ecbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain - metabolism</topic><topic>Brain connectivity</topic><topic>Brain research</topic><topic>Computer Simulation</topic><topic>Connectome - methods</topic><topic>Correlation</topic><topic>Cytoplasm</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene expression patterns</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation - physiology</topic><topic>Genomes</topic><topic>Investigations</topic><topic>Male</topic><topic>Mice</topic><topic>Models, Anatomic</topic><topic>Models, Neurological</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurons</topic><topic>Ontology</topic><topic>Prediction</topic><topic>Rodents</topic><topic>Sparse models</topic><topic>Systems Integration</topic><topic>Tissue Distribution</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Shuiwang</creatorcontrib><creatorcontrib>Fakhry, Ahmed</creatorcontrib><creatorcontrib>Deng, Houtao</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Shuiwang</au><au>Fakhry, Ahmed</au><au>Deng, Houtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrative analysis of the connectivity and gene expression atlases in the mouse brain</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>84</volume><spage>245</spage><epage>253</epage><pages>245-253</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Brain function is the result of interneuron signal transmission controlled by the fundamental biochemistry of each neuron. The biochemical content of a neuron is in turn determined by spatiotemporal gene expression and regulation encoded into the genomic regulatory networks. It is thus of particular interest to elucidate the relationship between gene expression patterns and connectivity in the brain. However, systematic studies of this relationship in a single mammalian brain are lacking to date. Here, we investigate this relationship in the mouse brain using the Allen Brain Atlas data. We employ computational models for predicting brain connectivity from gene expression data. In addition to giving competitive predictive performance, these models can rank the genes according to their predictive power. We show that gene expression is predictive of connectivity in the mouse brain when the connectivity signals are discretized. When the expression patterns of 4084 genes are used, we obtain a predictive accuracy of 93%. Our results also show that a small number of genes can almost give the full predictive power of using thousands of genes. We can achieve a prediction accuracy of 91% by using only 25 genes. Gene ontology analysis of the highly ranked genes shows that they are enriched for connectivity related processes. •We study the correlation between gene expression and brain connectivity.•We predict connectivity in the mouse brain using ensemble methods.•Gene expressions can predict brain connectivity.•We identify genes that generate brain connectivity.•Gene expressions are correlated with brain connectivity.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>24004696</pmid><doi>10.1016/j.neuroimage.2013.08.049</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2014-01, Vol.84, p.245-253
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_1500760199
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Biological and medical sciences
Brain - anatomy & histology
Brain - metabolism
Brain connectivity
Brain research
Computer Simulation
Connectome - methods
Correlation
Cytoplasm
Fundamental and applied biological sciences. Psychology
Gene expression
Gene expression patterns
Gene Expression Profiling - methods
Gene Expression Regulation - physiology
Genomes
Investigations
Male
Mice
Models, Anatomic
Models, Neurological
Nerve Tissue Proteins - metabolism
Neurons
Ontology
Prediction
Rodents
Sparse models
Systems Integration
Tissue Distribution
Vertebrates: nervous system and sense organs
title Integrative analysis of the connectivity and gene expression atlases in the mouse brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrative%20analysis%20of%20the%20connectivity%20and%20gene%20expression%20atlases%20in%20the%20mouse%20brain&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Ji,%20Shuiwang&rft.date=2014-01-01&rft.volume=84&rft.spage=245&rft.epage=253&rft.pages=245-253&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2013.08.049&rft_dat=%3Cproquest_cross%3E1500760199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547314458&rft_id=info:pmid/24004696&rft_els_id=S1053811913009129&rfr_iscdi=true