Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning
•We modeled compost enzymatic activity with VisNIR DRS spectra.•We examined 7 spectral pretreatments and 6 multivariate models.•Spectral separations were found for different compost types.•Artificial neural network was best for assessing compost enzymatic activity.•VisNIR DRS is promising for rapidl...
Gespeichert in:
Veröffentlicht in: | Waste management (Elmsford) 2014-03, Vol.34 (3), p.623-631 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 631 |
---|---|
container_issue | 3 |
container_start_page | 623 |
container_title | Waste management (Elmsford) |
container_volume | 34 |
creator | Chakraborty, Somsubhra Das, Bhabani S. Nasim Ali, Md Li, Bin Sarathjith, M.C. Majumdar, K. Ray, D.P. |
description | •We modeled compost enzymatic activity with VisNIR DRS spectra.•We examined 7 spectral pretreatments and 6 multivariate models.•Spectral separations were found for different compost types.•Artificial neural network was best for assessing compost enzymatic activity.•VisNIR DRS is promising for rapidly quantifying compost enzymatic activity.
The aim of this study was to investigate the feasibility of using visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) as an easy, inexpensive, and rapid method to predict compost enzymatic activity, which traditionally measured by fluorescein diacetate hydrolysis (FDA-HR) assay. Compost samples representative of five different compost facilities were scanned by DRS, and the raw reflectance spectra were preprocessed using seven spectral transformations for predicting compost FDA-HR with six multivariate algorithms. Although principal component analysis for all spectral pretreatments satisfactorily identified the clusters by compost types, it could not separate different FDA contents. Furthermore, the artificial neural network multilayer perceptron (residual prediction deviation=3.2, validation r2=0.91 and RMSE=13.38μgg−1h−1) outperformed other multivariate models to capture the highly non-linear relationships between compost enzymatic activity and VisNIR reflectance spectra after Savitzky–Golay first derivative pretreatment. This work demonstrates the efficiency of VisNIR DRS for predicting compost enzymatic as well as microbial activity. |
doi_str_mv | 10.1016/j.wasman.2013.12.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1499155100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956053X13005771</els_id><sourcerecordid>1499155100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-3f826997e48bac5b8eb1221fc8f17f7aa75075508a860dbb46b59f1ea33fe5403</originalsourceid><addsrcrecordid>eNp9kV2L1TAQhoMo7nH1H4jkRvCmNWmbNrkRZPELFoRlBe_CNJ14cmjTmuTs0v31m3KOeudVmPC8ycwzhLzmrOSMt-8P5T3ECXxZMV6XvCoZZ0_IjstOFVUj2qdkx5RoCybqnxfkRYwHxngjOXtOLqqmVrKq-I64G1jcQDEmN0Fys6ezpWaeljkmiv5h3W4NBZPcnUsr7VcaFzQpwEjBw7hGF-mEaT8PW6x3Hgd679KeTmD2uaIjQvDO_3pJnlkYI746n5fkx-dPt1dfi-vvX75dfbwuTK2qVNRWVq1SHTayByN6iT3PnVojLe9sB9AJ1gnBJMiWDX3ftL1QliPUtUXRsPqSvDu9u4T59zEPpicXDY4jeJyPUfNGKS4EZxvanFAT5hgDWr2ErCGsmjO9SdYHfZKsN8maVzpLzrE35x-O_YTD39Afqxl4ewYgGhhtAG9c_MfJus2bUJn7cOIw-7hzGHQ0Dr3BwYXsWA-z-38nj2G1nl4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499155100</pqid></control><display><type>article</type><title>Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Chakraborty, Somsubhra ; Das, Bhabani S. ; Nasim Ali, Md ; Li, Bin ; Sarathjith, M.C. ; Majumdar, K. ; Ray, D.P.</creator><creatorcontrib>Chakraborty, Somsubhra ; Das, Bhabani S. ; Nasim Ali, Md ; Li, Bin ; Sarathjith, M.C. ; Majumdar, K. ; Ray, D.P.</creatorcontrib><description>•We modeled compost enzymatic activity with VisNIR DRS spectra.•We examined 7 spectral pretreatments and 6 multivariate models.•Spectral separations were found for different compost types.•Artificial neural network was best for assessing compost enzymatic activity.•VisNIR DRS is promising for rapidly quantifying compost enzymatic activity.
The aim of this study was to investigate the feasibility of using visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) as an easy, inexpensive, and rapid method to predict compost enzymatic activity, which traditionally measured by fluorescein diacetate hydrolysis (FDA-HR) assay. Compost samples representative of five different compost facilities were scanned by DRS, and the raw reflectance spectra were preprocessed using seven spectral transformations for predicting compost FDA-HR with six multivariate algorithms. Although principal component analysis for all spectral pretreatments satisfactorily identified the clusters by compost types, it could not separate different FDA contents. Furthermore, the artificial neural network multilayer perceptron (residual prediction deviation=3.2, validation r2=0.91 and RMSE=13.38μgg−1h−1) outperformed other multivariate models to capture the highly non-linear relationships between compost enzymatic activity and VisNIR reflectance spectra after Savitzky–Golay first derivative pretreatment. This work demonstrates the efficiency of VisNIR DRS for predicting compost enzymatic as well as microbial activity.</description><identifier>ISSN: 0956-053X</identifier><identifier>EISSN: 1879-2456</identifier><identifier>DOI: 10.1016/j.wasman.2013.12.010</identifier><identifier>PMID: 24398221</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Artificial Intelligence ; Artificial neural network ; Compost ; Enzyme Assays - methods ; Enzymes - analysis ; Exact sciences and technology ; Fluorescein diacetate hydrolysis ; India ; Models, Theoretical ; Multivariate Analysis ; Other wastes and particular components of wastes ; Pollution ; Refuse Disposal ; Savitzky–Golay ; Soil Microbiology ; Spectroscopy, Near-Infrared ; Visible near infrared diffuse reflectance spectroscopy ; Wastes</subject><ispartof>Waste management (Elmsford), 2014-03, Vol.34 (3), p.623-631</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-3f826997e48bac5b8eb1221fc8f17f7aa75075508a860dbb46b59f1ea33fe5403</citedby><cites>FETCH-LOGICAL-c392t-3f826997e48bac5b8eb1221fc8f17f7aa75075508a860dbb46b59f1ea33fe5403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0956053X13005771$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28361489$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24398221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakraborty, Somsubhra</creatorcontrib><creatorcontrib>Das, Bhabani S.</creatorcontrib><creatorcontrib>Nasim Ali, Md</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Sarathjith, M.C.</creatorcontrib><creatorcontrib>Majumdar, K.</creatorcontrib><creatorcontrib>Ray, D.P.</creatorcontrib><title>Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning</title><title>Waste management (Elmsford)</title><addtitle>Waste Manag</addtitle><description>•We modeled compost enzymatic activity with VisNIR DRS spectra.•We examined 7 spectral pretreatments and 6 multivariate models.•Spectral separations were found for different compost types.•Artificial neural network was best for assessing compost enzymatic activity.•VisNIR DRS is promising for rapidly quantifying compost enzymatic activity.
The aim of this study was to investigate the feasibility of using visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) as an easy, inexpensive, and rapid method to predict compost enzymatic activity, which traditionally measured by fluorescein diacetate hydrolysis (FDA-HR) assay. Compost samples representative of five different compost facilities were scanned by DRS, and the raw reflectance spectra were preprocessed using seven spectral transformations for predicting compost FDA-HR with six multivariate algorithms. Although principal component analysis for all spectral pretreatments satisfactorily identified the clusters by compost types, it could not separate different FDA contents. Furthermore, the artificial neural network multilayer perceptron (residual prediction deviation=3.2, validation r2=0.91 and RMSE=13.38μgg−1h−1) outperformed other multivariate models to capture the highly non-linear relationships between compost enzymatic activity and VisNIR reflectance spectra after Savitzky–Golay first derivative pretreatment. This work demonstrates the efficiency of VisNIR DRS for predicting compost enzymatic as well as microbial activity.</description><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Artificial neural network</subject><subject>Compost</subject><subject>Enzyme Assays - methods</subject><subject>Enzymes - analysis</subject><subject>Exact sciences and technology</subject><subject>Fluorescein diacetate hydrolysis</subject><subject>India</subject><subject>Models, Theoretical</subject><subject>Multivariate Analysis</subject><subject>Other wastes and particular components of wastes</subject><subject>Pollution</subject><subject>Refuse Disposal</subject><subject>Savitzky–Golay</subject><subject>Soil Microbiology</subject><subject>Spectroscopy, Near-Infrared</subject><subject>Visible near infrared diffuse reflectance spectroscopy</subject><subject>Wastes</subject><issn>0956-053X</issn><issn>1879-2456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV2L1TAQhoMo7nH1H4jkRvCmNWmbNrkRZPELFoRlBe_CNJ14cmjTmuTs0v31m3KOeudVmPC8ycwzhLzmrOSMt-8P5T3ECXxZMV6XvCoZZ0_IjstOFVUj2qdkx5RoCybqnxfkRYwHxngjOXtOLqqmVrKq-I64G1jcQDEmN0Fys6ezpWaeljkmiv5h3W4NBZPcnUsr7VcaFzQpwEjBw7hGF-mEaT8PW6x3Hgd679KeTmD2uaIjQvDO_3pJnlkYI746n5fkx-dPt1dfi-vvX75dfbwuTK2qVNRWVq1SHTayByN6iT3PnVojLe9sB9AJ1gnBJMiWDX3ftL1QliPUtUXRsPqSvDu9u4T59zEPpicXDY4jeJyPUfNGKS4EZxvanFAT5hgDWr2ErCGsmjO9SdYHfZKsN8maVzpLzrE35x-O_YTD39Afqxl4ewYgGhhtAG9c_MfJus2bUJn7cOIw-7hzGHQ0Dr3BwYXsWA-z-38nj2G1nl4</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Chakraborty, Somsubhra</creator><creator>Das, Bhabani S.</creator><creator>Nasim Ali, Md</creator><creator>Li, Bin</creator><creator>Sarathjith, M.C.</creator><creator>Majumdar, K.</creator><creator>Ray, D.P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140301</creationdate><title>Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning</title><author>Chakraborty, Somsubhra ; Das, Bhabani S. ; Nasim Ali, Md ; Li, Bin ; Sarathjith, M.C. ; Majumdar, K. ; Ray, D.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-3f826997e48bac5b8eb1221fc8f17f7aa75075508a860dbb46b59f1ea33fe5403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Artificial neural network</topic><topic>Compost</topic><topic>Enzyme Assays - methods</topic><topic>Enzymes - analysis</topic><topic>Exact sciences and technology</topic><topic>Fluorescein diacetate hydrolysis</topic><topic>India</topic><topic>Models, Theoretical</topic><topic>Multivariate Analysis</topic><topic>Other wastes and particular components of wastes</topic><topic>Pollution</topic><topic>Refuse Disposal</topic><topic>Savitzky–Golay</topic><topic>Soil Microbiology</topic><topic>Spectroscopy, Near-Infrared</topic><topic>Visible near infrared diffuse reflectance spectroscopy</topic><topic>Wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Somsubhra</creatorcontrib><creatorcontrib>Das, Bhabani S.</creatorcontrib><creatorcontrib>Nasim Ali, Md</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Sarathjith, M.C.</creatorcontrib><creatorcontrib>Majumdar, K.</creatorcontrib><creatorcontrib>Ray, D.P.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Waste management (Elmsford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, Somsubhra</au><au>Das, Bhabani S.</au><au>Nasim Ali, Md</au><au>Li, Bin</au><au>Sarathjith, M.C.</au><au>Majumdar, K.</au><au>Ray, D.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning</atitle><jtitle>Waste management (Elmsford)</jtitle><addtitle>Waste Manag</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>34</volume><issue>3</issue><spage>623</spage><epage>631</epage><pages>623-631</pages><issn>0956-053X</issn><eissn>1879-2456</eissn><abstract>•We modeled compost enzymatic activity with VisNIR DRS spectra.•We examined 7 spectral pretreatments and 6 multivariate models.•Spectral separations were found for different compost types.•Artificial neural network was best for assessing compost enzymatic activity.•VisNIR DRS is promising for rapidly quantifying compost enzymatic activity.
The aim of this study was to investigate the feasibility of using visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) as an easy, inexpensive, and rapid method to predict compost enzymatic activity, which traditionally measured by fluorescein diacetate hydrolysis (FDA-HR) assay. Compost samples representative of five different compost facilities were scanned by DRS, and the raw reflectance spectra were preprocessed using seven spectral transformations for predicting compost FDA-HR with six multivariate algorithms. Although principal component analysis for all spectral pretreatments satisfactorily identified the clusters by compost types, it could not separate different FDA contents. Furthermore, the artificial neural network multilayer perceptron (residual prediction deviation=3.2, validation r2=0.91 and RMSE=13.38μgg−1h−1) outperformed other multivariate models to capture the highly non-linear relationships between compost enzymatic activity and VisNIR reflectance spectra after Savitzky–Golay first derivative pretreatment. This work demonstrates the efficiency of VisNIR DRS for predicting compost enzymatic as well as microbial activity.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>24398221</pmid><doi>10.1016/j.wasman.2013.12.010</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-053X |
ispartof | Waste management (Elmsford), 2014-03, Vol.34 (3), p.623-631 |
issn | 0956-053X 1879-2456 |
language | eng |
recordid | cdi_proquest_miscellaneous_1499155100 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Applied sciences Artificial Intelligence Artificial neural network Compost Enzyme Assays - methods Enzymes - analysis Exact sciences and technology Fluorescein diacetate hydrolysis India Models, Theoretical Multivariate Analysis Other wastes and particular components of wastes Pollution Refuse Disposal Savitzky–Golay Soil Microbiology Spectroscopy, Near-Infrared Visible near infrared diffuse reflectance spectroscopy Wastes |
title | Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20estimation%20of%20compost%20enzymatic%20activity%20by%20spectral%20analysis%20method%20combined%20with%20machine%20learning&rft.jtitle=Waste%20management%20(Elmsford)&rft.au=Chakraborty,%20Somsubhra&rft.date=2014-03-01&rft.volume=34&rft.issue=3&rft.spage=623&rft.epage=631&rft.pages=623-631&rft.issn=0956-053X&rft.eissn=1879-2456&rft_id=info:doi/10.1016/j.wasman.2013.12.010&rft_dat=%3Cproquest_cross%3E1499155100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499155100&rft_id=info:pmid/24398221&rft_els_id=S0956053X13005771&rfr_iscdi=true |