Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning

•We modeled compost enzymatic activity with VisNIR DRS spectra.•We examined 7 spectral pretreatments and 6 multivariate models.•Spectral separations were found for different compost types.•Artificial neural network was best for assessing compost enzymatic activity.•VisNIR DRS is promising for rapidl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Waste management (Elmsford) 2014-03, Vol.34 (3), p.623-631
Hauptverfasser: Chakraborty, Somsubhra, Das, Bhabani S., Nasim Ali, Md, Li, Bin, Sarathjith, M.C., Majumdar, K., Ray, D.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 631
container_issue 3
container_start_page 623
container_title Waste management (Elmsford)
container_volume 34
creator Chakraborty, Somsubhra
Das, Bhabani S.
Nasim Ali, Md
Li, Bin
Sarathjith, M.C.
Majumdar, K.
Ray, D.P.
description •We modeled compost enzymatic activity with VisNIR DRS spectra.•We examined 7 spectral pretreatments and 6 multivariate models.•Spectral separations were found for different compost types.•Artificial neural network was best for assessing compost enzymatic activity.•VisNIR DRS is promising for rapidly quantifying compost enzymatic activity. The aim of this study was to investigate the feasibility of using visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) as an easy, inexpensive, and rapid method to predict compost enzymatic activity, which traditionally measured by fluorescein diacetate hydrolysis (FDA-HR) assay. Compost samples representative of five different compost facilities were scanned by DRS, and the raw reflectance spectra were preprocessed using seven spectral transformations for predicting compost FDA-HR with six multivariate algorithms. Although principal component analysis for all spectral pretreatments satisfactorily identified the clusters by compost types, it could not separate different FDA contents. Furthermore, the artificial neural network multilayer perceptron (residual prediction deviation=3.2, validation r2=0.91 and RMSE=13.38μgg−1h−1) outperformed other multivariate models to capture the highly non-linear relationships between compost enzymatic activity and VisNIR reflectance spectra after Savitzky–Golay first derivative pretreatment. This work demonstrates the efficiency of VisNIR DRS for predicting compost enzymatic as well as microbial activity.
doi_str_mv 10.1016/j.wasman.2013.12.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1499155100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956053X13005771</els_id><sourcerecordid>1499155100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-3f826997e48bac5b8eb1221fc8f17f7aa75075508a860dbb46b59f1ea33fe5403</originalsourceid><addsrcrecordid>eNp9kV2L1TAQhoMo7nH1H4jkRvCmNWmbNrkRZPELFoRlBe_CNJ14cmjTmuTs0v31m3KOeudVmPC8ycwzhLzmrOSMt-8P5T3ECXxZMV6XvCoZZ0_IjstOFVUj2qdkx5RoCybqnxfkRYwHxngjOXtOLqqmVrKq-I64G1jcQDEmN0Fys6ezpWaeljkmiv5h3W4NBZPcnUsr7VcaFzQpwEjBw7hGF-mEaT8PW6x3Hgd679KeTmD2uaIjQvDO_3pJnlkYI746n5fkx-dPt1dfi-vvX75dfbwuTK2qVNRWVq1SHTayByN6iT3PnVojLe9sB9AJ1gnBJMiWDX3ftL1QliPUtUXRsPqSvDu9u4T59zEPpicXDY4jeJyPUfNGKS4EZxvanFAT5hgDWr2ErCGsmjO9SdYHfZKsN8maVzpLzrE35x-O_YTD39Afqxl4ewYgGhhtAG9c_MfJus2bUJn7cOIw-7hzGHQ0Dr3BwYXsWA-z-38nj2G1nl4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499155100</pqid></control><display><type>article</type><title>Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Chakraborty, Somsubhra ; Das, Bhabani S. ; Nasim Ali, Md ; Li, Bin ; Sarathjith, M.C. ; Majumdar, K. ; Ray, D.P.</creator><creatorcontrib>Chakraborty, Somsubhra ; Das, Bhabani S. ; Nasim Ali, Md ; Li, Bin ; Sarathjith, M.C. ; Majumdar, K. ; Ray, D.P.</creatorcontrib><description>•We modeled compost enzymatic activity with VisNIR DRS spectra.•We examined 7 spectral pretreatments and 6 multivariate models.•Spectral separations were found for different compost types.•Artificial neural network was best for assessing compost enzymatic activity.•VisNIR DRS is promising for rapidly quantifying compost enzymatic activity. The aim of this study was to investigate the feasibility of using visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) as an easy, inexpensive, and rapid method to predict compost enzymatic activity, which traditionally measured by fluorescein diacetate hydrolysis (FDA-HR) assay. Compost samples representative of five different compost facilities were scanned by DRS, and the raw reflectance spectra were preprocessed using seven spectral transformations for predicting compost FDA-HR with six multivariate algorithms. Although principal component analysis for all spectral pretreatments satisfactorily identified the clusters by compost types, it could not separate different FDA contents. Furthermore, the artificial neural network multilayer perceptron (residual prediction deviation=3.2, validation r2=0.91 and RMSE=13.38μgg−1h−1) outperformed other multivariate models to capture the highly non-linear relationships between compost enzymatic activity and VisNIR reflectance spectra after Savitzky–Golay first derivative pretreatment. This work demonstrates the efficiency of VisNIR DRS for predicting compost enzymatic as well as microbial activity.</description><identifier>ISSN: 0956-053X</identifier><identifier>EISSN: 1879-2456</identifier><identifier>DOI: 10.1016/j.wasman.2013.12.010</identifier><identifier>PMID: 24398221</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Artificial Intelligence ; Artificial neural network ; Compost ; Enzyme Assays - methods ; Enzymes - analysis ; Exact sciences and technology ; Fluorescein diacetate hydrolysis ; India ; Models, Theoretical ; Multivariate Analysis ; Other wastes and particular components of wastes ; Pollution ; Refuse Disposal ; Savitzky–Golay ; Soil Microbiology ; Spectroscopy, Near-Infrared ; Visible near infrared diffuse reflectance spectroscopy ; Wastes</subject><ispartof>Waste management (Elmsford), 2014-03, Vol.34 (3), p.623-631</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-3f826997e48bac5b8eb1221fc8f17f7aa75075508a860dbb46b59f1ea33fe5403</citedby><cites>FETCH-LOGICAL-c392t-3f826997e48bac5b8eb1221fc8f17f7aa75075508a860dbb46b59f1ea33fe5403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0956053X13005771$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28361489$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24398221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakraborty, Somsubhra</creatorcontrib><creatorcontrib>Das, Bhabani S.</creatorcontrib><creatorcontrib>Nasim Ali, Md</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Sarathjith, M.C.</creatorcontrib><creatorcontrib>Majumdar, K.</creatorcontrib><creatorcontrib>Ray, D.P.</creatorcontrib><title>Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning</title><title>Waste management (Elmsford)</title><addtitle>Waste Manag</addtitle><description>•We modeled compost enzymatic activity with VisNIR DRS spectra.•We examined 7 spectral pretreatments and 6 multivariate models.•Spectral separations were found for different compost types.•Artificial neural network was best for assessing compost enzymatic activity.•VisNIR DRS is promising for rapidly quantifying compost enzymatic activity. The aim of this study was to investigate the feasibility of using visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) as an easy, inexpensive, and rapid method to predict compost enzymatic activity, which traditionally measured by fluorescein diacetate hydrolysis (FDA-HR) assay. Compost samples representative of five different compost facilities were scanned by DRS, and the raw reflectance spectra were preprocessed using seven spectral transformations for predicting compost FDA-HR with six multivariate algorithms. Although principal component analysis for all spectral pretreatments satisfactorily identified the clusters by compost types, it could not separate different FDA contents. Furthermore, the artificial neural network multilayer perceptron (residual prediction deviation=3.2, validation r2=0.91 and RMSE=13.38μgg−1h−1) outperformed other multivariate models to capture the highly non-linear relationships between compost enzymatic activity and VisNIR reflectance spectra after Savitzky–Golay first derivative pretreatment. This work demonstrates the efficiency of VisNIR DRS for predicting compost enzymatic as well as microbial activity.</description><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Artificial neural network</subject><subject>Compost</subject><subject>Enzyme Assays - methods</subject><subject>Enzymes - analysis</subject><subject>Exact sciences and technology</subject><subject>Fluorescein diacetate hydrolysis</subject><subject>India</subject><subject>Models, Theoretical</subject><subject>Multivariate Analysis</subject><subject>Other wastes and particular components of wastes</subject><subject>Pollution</subject><subject>Refuse Disposal</subject><subject>Savitzky–Golay</subject><subject>Soil Microbiology</subject><subject>Spectroscopy, Near-Infrared</subject><subject>Visible near infrared diffuse reflectance spectroscopy</subject><subject>Wastes</subject><issn>0956-053X</issn><issn>1879-2456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV2L1TAQhoMo7nH1H4jkRvCmNWmbNrkRZPELFoRlBe_CNJ14cmjTmuTs0v31m3KOeudVmPC8ycwzhLzmrOSMt-8P5T3ECXxZMV6XvCoZZ0_IjstOFVUj2qdkx5RoCybqnxfkRYwHxngjOXtOLqqmVrKq-I64G1jcQDEmN0Fys6ezpWaeljkmiv5h3W4NBZPcnUsr7VcaFzQpwEjBw7hGF-mEaT8PW6x3Hgd679KeTmD2uaIjQvDO_3pJnlkYI746n5fkx-dPt1dfi-vvX75dfbwuTK2qVNRWVq1SHTayByN6iT3PnVojLe9sB9AJ1gnBJMiWDX3ftL1QliPUtUXRsPqSvDu9u4T59zEPpicXDY4jeJyPUfNGKS4EZxvanFAT5hgDWr2ErCGsmjO9SdYHfZKsN8maVzpLzrE35x-O_YTD39Afqxl4ewYgGhhtAG9c_MfJus2bUJn7cOIw-7hzGHQ0Dr3BwYXsWA-z-38nj2G1nl4</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Chakraborty, Somsubhra</creator><creator>Das, Bhabani S.</creator><creator>Nasim Ali, Md</creator><creator>Li, Bin</creator><creator>Sarathjith, M.C.</creator><creator>Majumdar, K.</creator><creator>Ray, D.P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140301</creationdate><title>Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning</title><author>Chakraborty, Somsubhra ; Das, Bhabani S. ; Nasim Ali, Md ; Li, Bin ; Sarathjith, M.C. ; Majumdar, K. ; Ray, D.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-3f826997e48bac5b8eb1221fc8f17f7aa75075508a860dbb46b59f1ea33fe5403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Artificial neural network</topic><topic>Compost</topic><topic>Enzyme Assays - methods</topic><topic>Enzymes - analysis</topic><topic>Exact sciences and technology</topic><topic>Fluorescein diacetate hydrolysis</topic><topic>India</topic><topic>Models, Theoretical</topic><topic>Multivariate Analysis</topic><topic>Other wastes and particular components of wastes</topic><topic>Pollution</topic><topic>Refuse Disposal</topic><topic>Savitzky–Golay</topic><topic>Soil Microbiology</topic><topic>Spectroscopy, Near-Infrared</topic><topic>Visible near infrared diffuse reflectance spectroscopy</topic><topic>Wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Somsubhra</creatorcontrib><creatorcontrib>Das, Bhabani S.</creatorcontrib><creatorcontrib>Nasim Ali, Md</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Sarathjith, M.C.</creatorcontrib><creatorcontrib>Majumdar, K.</creatorcontrib><creatorcontrib>Ray, D.P.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Waste management (Elmsford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, Somsubhra</au><au>Das, Bhabani S.</au><au>Nasim Ali, Md</au><au>Li, Bin</au><au>Sarathjith, M.C.</au><au>Majumdar, K.</au><au>Ray, D.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning</atitle><jtitle>Waste management (Elmsford)</jtitle><addtitle>Waste Manag</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>34</volume><issue>3</issue><spage>623</spage><epage>631</epage><pages>623-631</pages><issn>0956-053X</issn><eissn>1879-2456</eissn><abstract>•We modeled compost enzymatic activity with VisNIR DRS spectra.•We examined 7 spectral pretreatments and 6 multivariate models.•Spectral separations were found for different compost types.•Artificial neural network was best for assessing compost enzymatic activity.•VisNIR DRS is promising for rapidly quantifying compost enzymatic activity. The aim of this study was to investigate the feasibility of using visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) as an easy, inexpensive, and rapid method to predict compost enzymatic activity, which traditionally measured by fluorescein diacetate hydrolysis (FDA-HR) assay. Compost samples representative of five different compost facilities were scanned by DRS, and the raw reflectance spectra were preprocessed using seven spectral transformations for predicting compost FDA-HR with six multivariate algorithms. Although principal component analysis for all spectral pretreatments satisfactorily identified the clusters by compost types, it could not separate different FDA contents. Furthermore, the artificial neural network multilayer perceptron (residual prediction deviation=3.2, validation r2=0.91 and RMSE=13.38μgg−1h−1) outperformed other multivariate models to capture the highly non-linear relationships between compost enzymatic activity and VisNIR reflectance spectra after Savitzky–Golay first derivative pretreatment. This work demonstrates the efficiency of VisNIR DRS for predicting compost enzymatic as well as microbial activity.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>24398221</pmid><doi>10.1016/j.wasman.2013.12.010</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-053X
ispartof Waste management (Elmsford), 2014-03, Vol.34 (3), p.623-631
issn 0956-053X
1879-2456
language eng
recordid cdi_proquest_miscellaneous_1499155100
source MEDLINE; Elsevier ScienceDirect Journals
subjects Applied sciences
Artificial Intelligence
Artificial neural network
Compost
Enzyme Assays - methods
Enzymes - analysis
Exact sciences and technology
Fluorescein diacetate hydrolysis
India
Models, Theoretical
Multivariate Analysis
Other wastes and particular components of wastes
Pollution
Refuse Disposal
Savitzky–Golay
Soil Microbiology
Spectroscopy, Near-Infrared
Visible near infrared diffuse reflectance spectroscopy
Wastes
title Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20estimation%20of%20compost%20enzymatic%20activity%20by%20spectral%20analysis%20method%20combined%20with%20machine%20learning&rft.jtitle=Waste%20management%20(Elmsford)&rft.au=Chakraborty,%20Somsubhra&rft.date=2014-03-01&rft.volume=34&rft.issue=3&rft.spage=623&rft.epage=631&rft.pages=623-631&rft.issn=0956-053X&rft.eissn=1879-2456&rft_id=info:doi/10.1016/j.wasman.2013.12.010&rft_dat=%3Cproquest_cross%3E1499155100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499155100&rft_id=info:pmid/24398221&rft_els_id=S0956053X13005771&rfr_iscdi=true