Light trapping in ultrathin silicon photonic crystal superlattices with randomly-textured dielectric incouplers
We report here several different superlattice photonic crystal based designs for 200nm thick c-Si solar cells, demonstrating that these structures have the ability to increase broadband absorption from λ = 300nm to 1100nm by more than 100% compared to a planar cell with an optimized anti-reflection...
Gespeichert in:
Veröffentlicht in: | Optics express 2013-12, Vol.21 (25), p.30315-30326 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report here several different superlattice photonic crystal based designs for 200nm thick c-Si solar cells, demonstrating that these structures have the ability to increase broadband absorption from λ = 300nm to 1100nm by more than 100% compared to a planar cell with an optimized anti-reflection coating. We show that adding superlattices into photonic crystals introduces new optical modes that contribute to enhanced absorption. The greatest improvements are obtained when combining a superlattice photonic crystal with a randomly textured dielectric coating that improves incoupling into the modes of the absorbing region. Finally, we show that our design methodology is also applicable to layers 1 to 4 microns in thickness, where absorbed currents competitive with conventional thick Si solar cells may be achieved. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.21.030315 |