Shock wave interaction with a phospholipid membrane: coarse-grained computer simulations

We used MARTINI coarse-grained force field to study poration of a lipid bilayer by a shock wave induced nanobubble collapse. Different systems containing different sized nanobubbles that were exposed to shock waves propagating with different velocities were simulated. We observed creation of pores a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2014-02, Vol.140 (5), p.054906-054906
Hauptverfasser: Santo, Kolattukudy P, Berkowitz, Max L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 054906
container_issue 5
container_start_page 054906
container_title The Journal of chemical physics
container_volume 140
creator Santo, Kolattukudy P
Berkowitz, Max L
description We used MARTINI coarse-grained force field to study poration of a lipid bilayer by a shock wave induced nanobubble collapse. Different systems containing different sized nanobubbles that were exposed to shock waves propagating with different velocities were simulated. We observed creation of pores and damage to bilayers and also subsequent pore closing and the bilayer recovery after shock wave passed the bilayer. In all our systems where bilayers were damaged, they recovered; nevertheless we observed that a large amount of water crossed the pore that was temporarily created. We also observed that not every lipid molecule remained in the bilayer after recovery, some lipids moved out into water and created micelles.
doi_str_mv 10.1063/1.4862987
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1499145576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127697541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-439ba4eda23ddf4178f630f2e53207fffb0e461cb894b5fcbb913d56527224c33</originalsourceid><addsrcrecordid>eNpdkMtKxDAUhoMoznhZ-AJScKOLak6SJo07GbzBgAsV3JU0TZyMvZm0Dr69GWZ04eJwOPCdn58PoRPAl4A5vYJLlnMic7GDpoBzmQou8S6aYkwglRzzCToIYYkxBkHYPpoQlgFIkU_R2_Oi0x_JSn2ZxLWD8UoPrmuTlRsWiUr6RRfi1K53VdKYpvSqNdeJ7pQPJn33yrWmimfTj_E3Ca4Za7UOCEdoz6o6mOPtPkSvd7cvs4d0_nT_OLuZp5oCHVJGZamYqRShVWUZiNxyii0xGSVYWGtLbBgHXeaSlZnVZSmBVhnPiCCEaUoP0fkmt_fd52jCUDQuaFPXsWg3hgKYlMCyTPCInv1Dl93o29iuIECiM5ExiNTFhtK-C8EbW_TeNcp_F4CLte4Ciq3uyJ5uE8eyMdUf-euX_gCKrHoD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127697541</pqid></control><display><type>article</type><title>Shock wave interaction with a phospholipid membrane: coarse-grained computer simulations</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Santo, Kolattukudy P ; Berkowitz, Max L</creator><creatorcontrib>Santo, Kolattukudy P ; Berkowitz, Max L</creatorcontrib><description>We used MARTINI coarse-grained force field to study poration of a lipid bilayer by a shock wave induced nanobubble collapse. Different systems containing different sized nanobubbles that were exposed to shock waves propagating with different velocities were simulated. We observed creation of pores and damage to bilayers and also subsequent pore closing and the bilayer recovery after shock wave passed the bilayer. In all our systems where bilayers were damaged, they recovered; nevertheless we observed that a large amount of water crossed the pore that was temporarily created. We also observed that not every lipid molecule remained in the bilayer after recovery, some lipids moved out into water and created micelles.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4862987</identifier><identifier>PMID: 24511978</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Cholesterol - chemistry ; Computer Simulation ; Lipid Bilayers - chemistry ; Lipids ; Micelles ; Moisture content ; Particle Size ; Phospholipids ; Phospholipids - chemistry ; Physics ; Recovery ; Shock wave interaction ; Shock wave propagation ; Shock waves ; Sonication ; Wave interaction</subject><ispartof>The Journal of chemical physics, 2014-02, Vol.140 (5), p.054906-054906</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-439ba4eda23ddf4178f630f2e53207fffb0e461cb894b5fcbb913d56527224c33</citedby><cites>FETCH-LOGICAL-c313t-439ba4eda23ddf4178f630f2e53207fffb0e461cb894b5fcbb913d56527224c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24511978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santo, Kolattukudy P</creatorcontrib><creatorcontrib>Berkowitz, Max L</creatorcontrib><title>Shock wave interaction with a phospholipid membrane: coarse-grained computer simulations</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We used MARTINI coarse-grained force field to study poration of a lipid bilayer by a shock wave induced nanobubble collapse. Different systems containing different sized nanobubbles that were exposed to shock waves propagating with different velocities were simulated. We observed creation of pores and damage to bilayers and also subsequent pore closing and the bilayer recovery after shock wave passed the bilayer. In all our systems where bilayers were damaged, they recovered; nevertheless we observed that a large amount of water crossed the pore that was temporarily created. We also observed that not every lipid molecule remained in the bilayer after recovery, some lipids moved out into water and created micelles.</description><subject>Cholesterol - chemistry</subject><subject>Computer Simulation</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Micelles</subject><subject>Moisture content</subject><subject>Particle Size</subject><subject>Phospholipids</subject><subject>Phospholipids - chemistry</subject><subject>Physics</subject><subject>Recovery</subject><subject>Shock wave interaction</subject><subject>Shock wave propagation</subject><subject>Shock waves</subject><subject>Sonication</subject><subject>Wave interaction</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkMtKxDAUhoMoznhZ-AJScKOLak6SJo07GbzBgAsV3JU0TZyMvZm0Dr69GWZ04eJwOPCdn58PoRPAl4A5vYJLlnMic7GDpoBzmQou8S6aYkwglRzzCToIYYkxBkHYPpoQlgFIkU_R2_Oi0x_JSn2ZxLWD8UoPrmuTlRsWiUr6RRfi1K53VdKYpvSqNdeJ7pQPJn33yrWmimfTj_E3Ca4Za7UOCEdoz6o6mOPtPkSvd7cvs4d0_nT_OLuZp5oCHVJGZamYqRShVWUZiNxyii0xGSVYWGtLbBgHXeaSlZnVZSmBVhnPiCCEaUoP0fkmt_fd52jCUDQuaFPXsWg3hgKYlMCyTPCInv1Dl93o29iuIECiM5ExiNTFhtK-C8EbW_TeNcp_F4CLte4Ciq3uyJ5uE8eyMdUf-euX_gCKrHoD</recordid><startdate>20140207</startdate><enddate>20140207</enddate><creator>Santo, Kolattukudy P</creator><creator>Berkowitz, Max L</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20140207</creationdate><title>Shock wave interaction with a phospholipid membrane: coarse-grained computer simulations</title><author>Santo, Kolattukudy P ; Berkowitz, Max L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-439ba4eda23ddf4178f630f2e53207fffb0e461cb894b5fcbb913d56527224c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cholesterol - chemistry</topic><topic>Computer Simulation</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Micelles</topic><topic>Moisture content</topic><topic>Particle Size</topic><topic>Phospholipids</topic><topic>Phospholipids - chemistry</topic><topic>Physics</topic><topic>Recovery</topic><topic>Shock wave interaction</topic><topic>Shock wave propagation</topic><topic>Shock waves</topic><topic>Sonication</topic><topic>Wave interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santo, Kolattukudy P</creatorcontrib><creatorcontrib>Berkowitz, Max L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santo, Kolattukudy P</au><au>Berkowitz, Max L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shock wave interaction with a phospholipid membrane: coarse-grained computer simulations</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2014-02-07</date><risdate>2014</risdate><volume>140</volume><issue>5</issue><spage>054906</spage><epage>054906</epage><pages>054906-054906</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We used MARTINI coarse-grained force field to study poration of a lipid bilayer by a shock wave induced nanobubble collapse. Different systems containing different sized nanobubbles that were exposed to shock waves propagating with different velocities were simulated. We observed creation of pores and damage to bilayers and also subsequent pore closing and the bilayer recovery after shock wave passed the bilayer. In all our systems where bilayers were damaged, they recovered; nevertheless we observed that a large amount of water crossed the pore that was temporarily created. We also observed that not every lipid molecule remained in the bilayer after recovery, some lipids moved out into water and created micelles.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>24511978</pmid><doi>10.1063/1.4862987</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2014-02, Vol.140 (5), p.054906-054906
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_1499145576
source MEDLINE; AIP Journals Complete; Alma/SFX Local Collection
subjects Cholesterol - chemistry
Computer Simulation
Lipid Bilayers - chemistry
Lipids
Micelles
Moisture content
Particle Size
Phospholipids
Phospholipids - chemistry
Physics
Recovery
Shock wave interaction
Shock wave propagation
Shock waves
Sonication
Wave interaction
title Shock wave interaction with a phospholipid membrane: coarse-grained computer simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T01%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shock%20wave%20interaction%20with%20a%20phospholipid%20membrane:%20coarse-grained%20computer%20simulations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Santo,%20Kolattukudy%20P&rft.date=2014-02-07&rft.volume=140&rft.issue=5&rft.spage=054906&rft.epage=054906&rft.pages=054906-054906&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4862987&rft_dat=%3Cproquest_cross%3E2127697541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127697541&rft_id=info:pmid/24511978&rfr_iscdi=true