Shock wave interaction with a phospholipid membrane: coarse-grained computer simulations
We used MARTINI coarse-grained force field to study poration of a lipid bilayer by a shock wave induced nanobubble collapse. Different systems containing different sized nanobubbles that were exposed to shock waves propagating with different velocities were simulated. We observed creation of pores a...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2014-02, Vol.140 (5), p.054906-054906 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 054906 |
---|---|
container_issue | 5 |
container_start_page | 054906 |
container_title | The Journal of chemical physics |
container_volume | 140 |
creator | Santo, Kolattukudy P Berkowitz, Max L |
description | We used MARTINI coarse-grained force field to study poration of a lipid bilayer by a shock wave induced nanobubble collapse. Different systems containing different sized nanobubbles that were exposed to shock waves propagating with different velocities were simulated. We observed creation of pores and damage to bilayers and also subsequent pore closing and the bilayer recovery after shock wave passed the bilayer. In all our systems where bilayers were damaged, they recovered; nevertheless we observed that a large amount of water crossed the pore that was temporarily created. We also observed that not every lipid molecule remained in the bilayer after recovery, some lipids moved out into water and created micelles. |
doi_str_mv | 10.1063/1.4862987 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1499145576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127697541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-439ba4eda23ddf4178f630f2e53207fffb0e461cb894b5fcbb913d56527224c33</originalsourceid><addsrcrecordid>eNpdkMtKxDAUhoMoznhZ-AJScKOLak6SJo07GbzBgAsV3JU0TZyMvZm0Dr69GWZ04eJwOPCdn58PoRPAl4A5vYJLlnMic7GDpoBzmQou8S6aYkwglRzzCToIYYkxBkHYPpoQlgFIkU_R2_Oi0x_JSn2ZxLWD8UoPrmuTlRsWiUr6RRfi1K53VdKYpvSqNdeJ7pQPJn33yrWmimfTj_E3Ca4Za7UOCEdoz6o6mOPtPkSvd7cvs4d0_nT_OLuZp5oCHVJGZamYqRShVWUZiNxyii0xGSVYWGtLbBgHXeaSlZnVZSmBVhnPiCCEaUoP0fkmt_fd52jCUDQuaFPXsWg3hgKYlMCyTPCInv1Dl93o29iuIECiM5ExiNTFhtK-C8EbW_TeNcp_F4CLte4Ciq3uyJ5uE8eyMdUf-euX_gCKrHoD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127697541</pqid></control><display><type>article</type><title>Shock wave interaction with a phospholipid membrane: coarse-grained computer simulations</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Santo, Kolattukudy P ; Berkowitz, Max L</creator><creatorcontrib>Santo, Kolattukudy P ; Berkowitz, Max L</creatorcontrib><description>We used MARTINI coarse-grained force field to study poration of a lipid bilayer by a shock wave induced nanobubble collapse. Different systems containing different sized nanobubbles that were exposed to shock waves propagating with different velocities were simulated. We observed creation of pores and damage to bilayers and also subsequent pore closing and the bilayer recovery after shock wave passed the bilayer. In all our systems where bilayers were damaged, they recovered; nevertheless we observed that a large amount of water crossed the pore that was temporarily created. We also observed that not every lipid molecule remained in the bilayer after recovery, some lipids moved out into water and created micelles.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4862987</identifier><identifier>PMID: 24511978</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Cholesterol - chemistry ; Computer Simulation ; Lipid Bilayers - chemistry ; Lipids ; Micelles ; Moisture content ; Particle Size ; Phospholipids ; Phospholipids - chemistry ; Physics ; Recovery ; Shock wave interaction ; Shock wave propagation ; Shock waves ; Sonication ; Wave interaction</subject><ispartof>The Journal of chemical physics, 2014-02, Vol.140 (5), p.054906-054906</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-439ba4eda23ddf4178f630f2e53207fffb0e461cb894b5fcbb913d56527224c33</citedby><cites>FETCH-LOGICAL-c313t-439ba4eda23ddf4178f630f2e53207fffb0e461cb894b5fcbb913d56527224c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24511978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santo, Kolattukudy P</creatorcontrib><creatorcontrib>Berkowitz, Max L</creatorcontrib><title>Shock wave interaction with a phospholipid membrane: coarse-grained computer simulations</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We used MARTINI coarse-grained force field to study poration of a lipid bilayer by a shock wave induced nanobubble collapse. Different systems containing different sized nanobubbles that were exposed to shock waves propagating with different velocities were simulated. We observed creation of pores and damage to bilayers and also subsequent pore closing and the bilayer recovery after shock wave passed the bilayer. In all our systems where bilayers were damaged, they recovered; nevertheless we observed that a large amount of water crossed the pore that was temporarily created. We also observed that not every lipid molecule remained in the bilayer after recovery, some lipids moved out into water and created micelles.</description><subject>Cholesterol - chemistry</subject><subject>Computer Simulation</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Micelles</subject><subject>Moisture content</subject><subject>Particle Size</subject><subject>Phospholipids</subject><subject>Phospholipids - chemistry</subject><subject>Physics</subject><subject>Recovery</subject><subject>Shock wave interaction</subject><subject>Shock wave propagation</subject><subject>Shock waves</subject><subject>Sonication</subject><subject>Wave interaction</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkMtKxDAUhoMoznhZ-AJScKOLak6SJo07GbzBgAsV3JU0TZyMvZm0Dr69GWZ04eJwOPCdn58PoRPAl4A5vYJLlnMic7GDpoBzmQou8S6aYkwglRzzCToIYYkxBkHYPpoQlgFIkU_R2_Oi0x_JSn2ZxLWD8UoPrmuTlRsWiUr6RRfi1K53VdKYpvSqNdeJ7pQPJn33yrWmimfTj_E3Ca4Za7UOCEdoz6o6mOPtPkSvd7cvs4d0_nT_OLuZp5oCHVJGZamYqRShVWUZiNxyii0xGSVYWGtLbBgHXeaSlZnVZSmBVhnPiCCEaUoP0fkmt_fd52jCUDQuaFPXsWg3hgKYlMCyTPCInv1Dl93o29iuIECiM5ExiNTFhtK-C8EbW_TeNcp_F4CLte4Ciq3uyJ5uE8eyMdUf-euX_gCKrHoD</recordid><startdate>20140207</startdate><enddate>20140207</enddate><creator>Santo, Kolattukudy P</creator><creator>Berkowitz, Max L</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20140207</creationdate><title>Shock wave interaction with a phospholipid membrane: coarse-grained computer simulations</title><author>Santo, Kolattukudy P ; Berkowitz, Max L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-439ba4eda23ddf4178f630f2e53207fffb0e461cb894b5fcbb913d56527224c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cholesterol - chemistry</topic><topic>Computer Simulation</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Micelles</topic><topic>Moisture content</topic><topic>Particle Size</topic><topic>Phospholipids</topic><topic>Phospholipids - chemistry</topic><topic>Physics</topic><topic>Recovery</topic><topic>Shock wave interaction</topic><topic>Shock wave propagation</topic><topic>Shock waves</topic><topic>Sonication</topic><topic>Wave interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santo, Kolattukudy P</creatorcontrib><creatorcontrib>Berkowitz, Max L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santo, Kolattukudy P</au><au>Berkowitz, Max L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shock wave interaction with a phospholipid membrane: coarse-grained computer simulations</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2014-02-07</date><risdate>2014</risdate><volume>140</volume><issue>5</issue><spage>054906</spage><epage>054906</epage><pages>054906-054906</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We used MARTINI coarse-grained force field to study poration of a lipid bilayer by a shock wave induced nanobubble collapse. Different systems containing different sized nanobubbles that were exposed to shock waves propagating with different velocities were simulated. We observed creation of pores and damage to bilayers and also subsequent pore closing and the bilayer recovery after shock wave passed the bilayer. In all our systems where bilayers were damaged, they recovered; nevertheless we observed that a large amount of water crossed the pore that was temporarily created. We also observed that not every lipid molecule remained in the bilayer after recovery, some lipids moved out into water and created micelles.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>24511978</pmid><doi>10.1063/1.4862987</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2014-02, Vol.140 (5), p.054906-054906 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_1499145576 |
source | MEDLINE; AIP Journals Complete; Alma/SFX Local Collection |
subjects | Cholesterol - chemistry Computer Simulation Lipid Bilayers - chemistry Lipids Micelles Moisture content Particle Size Phospholipids Phospholipids - chemistry Physics Recovery Shock wave interaction Shock wave propagation Shock waves Sonication Wave interaction |
title | Shock wave interaction with a phospholipid membrane: coarse-grained computer simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T01%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shock%20wave%20interaction%20with%20a%20phospholipid%20membrane:%20coarse-grained%20computer%20simulations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Santo,%20Kolattukudy%20P&rft.date=2014-02-07&rft.volume=140&rft.issue=5&rft.spage=054906&rft.epage=054906&rft.pages=054906-054906&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4862987&rft_dat=%3Cproquest_cross%3E2127697541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127697541&rft_id=info:pmid/24511978&rfr_iscdi=true |