In vivo monitoring of implant osseointegration in a rabbit model using acoustic sound analysis
ABSTRACT Implant osseointegration can currently only be assessed reliably post mortem. A novel method that relies on the principle of acoustic sound analysis was developed to enable examination of the longitudinal progress of osseointegration. The method is based on a magnetic sphere inside a hollow...
Gespeichert in:
Veröffentlicht in: | Journal of orthopaedic research 2014-04, Vol.32 (4), p.606-612 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
Implant osseointegration can currently only be assessed reliably post mortem. A novel method that relies on the principle of acoustic sound analysis was developed to enable examination of the longitudinal progress of osseointegration. The method is based on a magnetic sphere inside a hollow cylinder of the implant. By excitation using an external magnetic field, collision of the sphere inside the implant produces a sound signal. Custom‐made titanium implants equipped thusly were inserted in each lateral femoral epicondyle of 20 New Zealand White Rabbits. Two groups were investigated: Uncoated, machined surface versus antiadhesive surface; and calcium phosphate‐coated surface versus antiadhesive surface. The sound analysis was performed postoperatively and weekly. After 4 weeks, the animals were euthanized, and the axial pull‐out strengths of the implants were determined. A significant increase in the central frequency was observed for the loose implants (mean pull‐out strength 21.1 ± 16.9 N), up to 6.4 kHz over 4 weeks. In comparison, the central frequency of the osseointegrated implants (105.2 ± 25.3 N) dropped to its initial value. The presented method shows potential for monitoring the osseointegration of different implant surfaces and could considerably reduce the number of animals needed for experiments. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:606–612, 2014. |
---|---|
ISSN: | 0736-0266 1554-527X |
DOI: | 10.1002/jor.22574 |