Hounsfield units variations: Impact on CT-density based conversion tables and their effects on dose distribution
Purpose Determination of dose error margins in radiation therapy planning due to variations in Hounsfield Units (HU) values dependent on the use of different CT scanning protocols. Patients and methods Based on a series of different CT scanning protocols used in clinical practice, conversion tables...
Gespeichert in:
Veröffentlicht in: | Strahlentherapie und Onkologie 2014, Vol.190 (1), p.88-93 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 93 |
---|---|
container_issue | 1 |
container_start_page | 88 |
container_title | Strahlentherapie und Onkologie |
container_volume | 190 |
creator | Zurl, B. Tiefling, R. Winkler, P. Kindl, P. Kapp, K.S. |
description | Purpose
Determination of dose error margins in radiation therapy planning due to variations in Hounsfield Units (HU) values dependent on the use of different CT scanning protocols.
Patients and methods
Based on a series of different CT scanning protocols used in clinical practice, conversion tables for radiation dose calculations were generated and subsequently tested on a phantom. These tables were then used to recalculate the radiation therapy plans of 28 real patients after an incorrect scanning protocol had inadvertently been used for these patients.
Results
Different CT parameter settings resulted in errors of HU values of up to 2.6 % for densities of 1.1 g/cm
3
. The largest errors were associated with changes in the tube voltage. Tests on a virtual water phantom with layers of variable thickness and density revealed a sawtooth-shaped curve for the increase of dose differences from 0.3 to 0.6 % and 1.5 % at layer thicknesses of 1, 3, and 7 cm, respectively. Use of a beam hardening filter resulted in a reference dose difference of 0.6 % in response to a density change of 5 %. The recalculation of data from 28 patients who received radiation therapy to the head revealed an overdose of 1.3 ± 0.4 % to the bone and 0.7 ± 0.1 % to brain tissue. On average, therefore, one monitor unit (range 0–3 MU) per 100 MU more than the correct dose had been given.
Conclusion
Use of different CT scanning protocols leads to variations of up to 20 % in the HU values. This can result in a mean systematic dose error of 1.5 %. Specific conversion tables and automatic CT scanning protocol recognition could reduce dose errors of these types. |
doi_str_mv | 10.1007/s00066-013-0464-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1499134757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1499134757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-754bf3771a34a17fbdf8f7167cace66e02a82e903503faf3be27fd2694dd2edc3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMo7rr6A0SQBS9eojNJmjRHWfyCBS8K3kLaJtKl265JK_jvzdJVRPA0h3ned4aHkFOEKwRQ1xEApKSAnIKQgmZ7ZIqCawpav-6TKaDSVGGWT8hRjCsAlEKLQzJhgqVQjlNy9tANbfS1a6r50NZ9nH_YUNu-7tp4TA68baI72c0Zebm7fV480OXT_ePiZklLzkRPVSYKz5VCy4VF5YvK516hVKUtnZQOmM2Z08Az4N56XjimfMWkFlXFXFXyGbkcezehex9c7M26jqVrGtu6bogGhdbIhcpUQi_-oKtuCG36LlEyz5kW6cqM4EiVoYsxOG82oV7b8GkQzNacGc2ZJMFszZksZc53zUOxdtVP4ltVAtgIxLRq31z4dfrf1i_yS3b3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1468829450</pqid></control><display><type>article</type><title>Hounsfield units variations: Impact on CT-density based conversion tables and their effects on dose distribution</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Zurl, B. ; Tiefling, R. ; Winkler, P. ; Kindl, P. ; Kapp, K.S.</creator><creatorcontrib>Zurl, B. ; Tiefling, R. ; Winkler, P. ; Kindl, P. ; Kapp, K.S.</creatorcontrib><description>Purpose
Determination of dose error margins in radiation therapy planning due to variations in Hounsfield Units (HU) values dependent on the use of different CT scanning protocols.
Patients and methods
Based on a series of different CT scanning protocols used in clinical practice, conversion tables for radiation dose calculations were generated and subsequently tested on a phantom. These tables were then used to recalculate the radiation therapy plans of 28 real patients after an incorrect scanning protocol had inadvertently been used for these patients.
Results
Different CT parameter settings resulted in errors of HU values of up to 2.6 % for densities of < 1.1 g/cm
3
, but up to 25.6 % for densities of > 1.1 g/cm
3
. The largest errors were associated with changes in the tube voltage. Tests on a virtual water phantom with layers of variable thickness and density revealed a sawtooth-shaped curve for the increase of dose differences from 0.3 to 0.6 % and 1.5 % at layer thicknesses of 1, 3, and 7 cm, respectively. Use of a beam hardening filter resulted in a reference dose difference of 0.6 % in response to a density change of 5 %. The recalculation of data from 28 patients who received radiation therapy to the head revealed an overdose of 1.3 ± 0.4 % to the bone and 0.7 ± 0.1 % to brain tissue. On average, therefore, one monitor unit (range 0–3 MU) per 100 MU more than the correct dose had been given.
Conclusion
Use of different CT scanning protocols leads to variations of up to 20 % in the HU values. This can result in a mean systematic dose error of 1.5 %. Specific conversion tables and automatic CT scanning protocol recognition could reduce dose errors of these types.</description><identifier>ISSN: 0179-7158</identifier><identifier>EISSN: 1439-099X</identifier><identifier>DOI: 10.1007/s00066-013-0464-5</identifier><identifier>PMID: 24201381</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Humans ; Medicine ; Medicine & Public Health ; Oncology ; Original Article ; Phantoms, Imaging ; Radiation Dosage ; Radiographic Image Interpretation, Computer-Assisted - methods ; Radiotherapy ; Radiotherapy Planning, Computer-Assisted - methods ; Radiotherapy, Conformal - methods ; Radiotherapy, Image-Guided - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Tomography, X-Ray Computed - instrumentation ; Tomography, X-Ray Computed - methods</subject><ispartof>Strahlentherapie und Onkologie, 2014, Vol.190 (1), p.88-93</ispartof><rights>Springer Heidelberg Berlin 2013</rights><rights>Springer Heidelberg Berlin 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c324t-754bf3771a34a17fbdf8f7167cace66e02a82e903503faf3be27fd2694dd2edc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00066-013-0464-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00066-013-0464-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24201381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zurl, B.</creatorcontrib><creatorcontrib>Tiefling, R.</creatorcontrib><creatorcontrib>Winkler, P.</creatorcontrib><creatorcontrib>Kindl, P.</creatorcontrib><creatorcontrib>Kapp, K.S.</creatorcontrib><title>Hounsfield units variations: Impact on CT-density based conversion tables and their effects on dose distribution</title><title>Strahlentherapie und Onkologie</title><addtitle>Strahlenther Onkol</addtitle><addtitle>Strahlenther Onkol</addtitle><description>Purpose
Determination of dose error margins in radiation therapy planning due to variations in Hounsfield Units (HU) values dependent on the use of different CT scanning protocols.
Patients and methods
Based on a series of different CT scanning protocols used in clinical practice, conversion tables for radiation dose calculations were generated and subsequently tested on a phantom. These tables were then used to recalculate the radiation therapy plans of 28 real patients after an incorrect scanning protocol had inadvertently been used for these patients.
Results
Different CT parameter settings resulted in errors of HU values of up to 2.6 % for densities of < 1.1 g/cm
3
, but up to 25.6 % for densities of > 1.1 g/cm
3
. The largest errors were associated with changes in the tube voltage. Tests on a virtual water phantom with layers of variable thickness and density revealed a sawtooth-shaped curve for the increase of dose differences from 0.3 to 0.6 % and 1.5 % at layer thicknesses of 1, 3, and 7 cm, respectively. Use of a beam hardening filter resulted in a reference dose difference of 0.6 % in response to a density change of 5 %. The recalculation of data from 28 patients who received radiation therapy to the head revealed an overdose of 1.3 ± 0.4 % to the bone and 0.7 ± 0.1 % to brain tissue. On average, therefore, one monitor unit (range 0–3 MU) per 100 MU more than the correct dose had been given.
Conclusion
Use of different CT scanning protocols leads to variations of up to 20 % in the HU values. This can result in a mean systematic dose error of 1.5 %. Specific conversion tables and automatic CT scanning protocol recognition could reduce dose errors of these types.</description><subject>Algorithms</subject><subject>Humans</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Oncology</subject><subject>Original Article</subject><subject>Phantoms, Imaging</subject><subject>Radiation Dosage</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Radiotherapy</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Radiotherapy, Conformal - methods</subject><subject>Radiotherapy, Image-Guided - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Tomography, X-Ray Computed - instrumentation</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>0179-7158</issn><issn>1439-099X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LxDAQhoMo7rr6A0SQBS9eojNJmjRHWfyCBS8K3kLaJtKl265JK_jvzdJVRPA0h3ned4aHkFOEKwRQ1xEApKSAnIKQgmZ7ZIqCawpav-6TKaDSVGGWT8hRjCsAlEKLQzJhgqVQjlNy9tANbfS1a6r50NZ9nH_YUNu-7tp4TA68baI72c0Zebm7fV480OXT_ePiZklLzkRPVSYKz5VCy4VF5YvK516hVKUtnZQOmM2Z08Az4N56XjimfMWkFlXFXFXyGbkcezehex9c7M26jqVrGtu6bogGhdbIhcpUQi_-oKtuCG36LlEyz5kW6cqM4EiVoYsxOG82oV7b8GkQzNacGc2ZJMFszZksZc53zUOxdtVP4ltVAtgIxLRq31z4dfrf1i_yS3b3</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Zurl, B.</creator><creator>Tiefling, R.</creator><creator>Winkler, P.</creator><creator>Kindl, P.</creator><creator>Kapp, K.S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>2014</creationdate><title>Hounsfield units variations</title><author>Zurl, B. ; Tiefling, R. ; Winkler, P. ; Kindl, P. ; Kapp, K.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-754bf3771a34a17fbdf8f7167cace66e02a82e903503faf3be27fd2694dd2edc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Humans</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Oncology</topic><topic>Original Article</topic><topic>Phantoms, Imaging</topic><topic>Radiation Dosage</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Radiotherapy</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Radiotherapy, Conformal - methods</topic><topic>Radiotherapy, Image-Guided - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Tomography, X-Ray Computed - instrumentation</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zurl, B.</creatorcontrib><creatorcontrib>Tiefling, R.</creatorcontrib><creatorcontrib>Winkler, P.</creatorcontrib><creatorcontrib>Kindl, P.</creatorcontrib><creatorcontrib>Kapp, K.S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Strahlentherapie und Onkologie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zurl, B.</au><au>Tiefling, R.</au><au>Winkler, P.</au><au>Kindl, P.</au><au>Kapp, K.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hounsfield units variations: Impact on CT-density based conversion tables and their effects on dose distribution</atitle><jtitle>Strahlentherapie und Onkologie</jtitle><stitle>Strahlenther Onkol</stitle><addtitle>Strahlenther Onkol</addtitle><date>2014</date><risdate>2014</risdate><volume>190</volume><issue>1</issue><spage>88</spage><epage>93</epage><pages>88-93</pages><issn>0179-7158</issn><eissn>1439-099X</eissn><abstract>Purpose
Determination of dose error margins in radiation therapy planning due to variations in Hounsfield Units (HU) values dependent on the use of different CT scanning protocols.
Patients and methods
Based on a series of different CT scanning protocols used in clinical practice, conversion tables for radiation dose calculations were generated and subsequently tested on a phantom. These tables were then used to recalculate the radiation therapy plans of 28 real patients after an incorrect scanning protocol had inadvertently been used for these patients.
Results
Different CT parameter settings resulted in errors of HU values of up to 2.6 % for densities of < 1.1 g/cm
3
, but up to 25.6 % for densities of > 1.1 g/cm
3
. The largest errors were associated with changes in the tube voltage. Tests on a virtual water phantom with layers of variable thickness and density revealed a sawtooth-shaped curve for the increase of dose differences from 0.3 to 0.6 % and 1.5 % at layer thicknesses of 1, 3, and 7 cm, respectively. Use of a beam hardening filter resulted in a reference dose difference of 0.6 % in response to a density change of 5 %. The recalculation of data from 28 patients who received radiation therapy to the head revealed an overdose of 1.3 ± 0.4 % to the bone and 0.7 ± 0.1 % to brain tissue. On average, therefore, one monitor unit (range 0–3 MU) per 100 MU more than the correct dose had been given.
Conclusion
Use of different CT scanning protocols leads to variations of up to 20 % in the HU values. This can result in a mean systematic dose error of 1.5 %. Specific conversion tables and automatic CT scanning protocol recognition could reduce dose errors of these types.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>24201381</pmid><doi>10.1007/s00066-013-0464-5</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0179-7158 |
ispartof | Strahlentherapie und Onkologie, 2014, Vol.190 (1), p.88-93 |
issn | 0179-7158 1439-099X |
language | eng |
recordid | cdi_proquest_miscellaneous_1499134757 |
source | MEDLINE; SpringerNature Journals |
subjects | Algorithms Humans Medicine Medicine & Public Health Oncology Original Article Phantoms, Imaging Radiation Dosage Radiographic Image Interpretation, Computer-Assisted - methods Radiotherapy Radiotherapy Planning, Computer-Assisted - methods Radiotherapy, Conformal - methods Radiotherapy, Image-Guided - methods Reproducibility of Results Sensitivity and Specificity Tomography, X-Ray Computed - instrumentation Tomography, X-Ray Computed - methods |
title | Hounsfield units variations: Impact on CT-density based conversion tables and their effects on dose distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A01%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hounsfield%20units%20variations:%20Impact%20on%20CT-density%20based%20conversion%20tables%20and%20their%20effects%20on%20dose%20distribution&rft.jtitle=Strahlentherapie%20und%20Onkologie&rft.au=Zurl,%20B.&rft.date=2014&rft.volume=190&rft.issue=1&rft.spage=88&rft.epage=93&rft.pages=88-93&rft.issn=0179-7158&rft.eissn=1439-099X&rft_id=info:doi/10.1007/s00066-013-0464-5&rft_dat=%3Cproquest_cross%3E1499134757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1468829450&rft_id=info:pmid/24201381&rfr_iscdi=true |