On the Role of Particle Inorganic Mixing State in the Reactive Uptake of N2O5 to Ambient Aerosol Particles

The rates of heterogeneous reactions of trace gases with aerosol particles are complex functions of particle chemical composition, morphology, and phase state. Currently, the majority of model parametrizations of heterogeneous reaction kinetics focus on the population average of aerosol particle mas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2014-02, Vol.48 (3), p.1618-1627
Hauptverfasser: Ryder, Olivia S, Ault, Andrew P, Cahill, John F, Guasco, Timothy L, Riedel, Theran P, Cuadra-Rodriguez, Luis A, Gaston, Cassandra J, Fitzgerald, Elizabeth, Lee, Christopher, Prather, Kimberly A, Bertram, Timothy H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1627
container_issue 3
container_start_page 1618
container_title Environmental science & technology
container_volume 48
creator Ryder, Olivia S
Ault, Andrew P
Cahill, John F
Guasco, Timothy L
Riedel, Theran P
Cuadra-Rodriguez, Luis A
Gaston, Cassandra J
Fitzgerald, Elizabeth
Lee, Christopher
Prather, Kimberly A
Bertram, Timothy H
description The rates of heterogeneous reactions of trace gases with aerosol particles are complex functions of particle chemical composition, morphology, and phase state. Currently, the majority of model parametrizations of heterogeneous reaction kinetics focus on the population average of aerosol particle mass, assuming that individual particles have the same chemical composition as the average state. Here we assess the impact of particle mixing state on heterogeneous reaction kinetics using the N2O5 reactive uptake coefficient, γ(N2O5), and dependence on the particulate chloride-to-nitrate ratio (nCl–/nNO3 –). We describe the first simultaneous ambient observations of single particle chemical composition and in situ determinations of γ(N2O5). When accounting for particulate nCl–/nNO3 – mixing state, model parametrizations of γ(N2O5) continue to overpredict γ(N2O5) by more than a factor of 2 in polluted coastal regions, suggesting that chemical composition and physical phase state of particulate organics likely control γ(N2O5) in these air masses. In contrast, direct measurement of γ(N2O5) in air masses of marine origin are well captured by model parametrizations and reveal limited suppression of γ(N2O5), indicating that the organic mass fraction of fresh sea spray aerosol at this location does not suppress γ(N2O5). We provide an observation-based framework for assessing the impact of particle mixing state on gas–particle interactions.
doi_str_mv 10.1021/es4042622
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1499133389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1499133389</sourcerecordid><originalsourceid>FETCH-LOGICAL-a271t-4673ea49485f0e44ef17865e9e962b66f652b30fc2da31bd23b5f39a03a782ec3</originalsourceid><addsrcrecordid>eNpN0U1PwzAMBuAIgdgYHPgDKBckLoUkTr-OE-Jj0mAImMStcjN3ZHTNaDIE_54BY3CyD49fyTZjh1KcSqHkGXkttEqU2mJdGSsRxVkst1lXCAlRDslTh-15PxNCKBDZLusoDVkqNXTZbNTw8Ez83tXEXcXvsA3WrPpB49opNtbwG_tumyl_CBiI2zUnNMG-ER8vAr58T96qUcyD4_15aakJvE-t867eJPp9tlNh7elgXXtsfHnxeH4dDUdXg_P-MEKVyhDpJAVCnessrgRpTZVMsySmnPJElUlSJbEqQVRGTRBkOVFQxhXkKADTTJGBHjv5yV207nVJPhRz6w3VNTbklr6QOs8lAGT5ih6t6bKc06RYtHaO7Ufxe58VOF4D9AbrqsXGWP_nMtA6Ff8cGl_M3LJtVhsWUhRf_yk2_4FPjut9OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499133389</pqid></control><display><type>article</type><title>On the Role of Particle Inorganic Mixing State in the Reactive Uptake of N2O5 to Ambient Aerosol Particles</title><source>MEDLINE</source><source>ACS Publications</source><creator>Ryder, Olivia S ; Ault, Andrew P ; Cahill, John F ; Guasco, Timothy L ; Riedel, Theran P ; Cuadra-Rodriguez, Luis A ; Gaston, Cassandra J ; Fitzgerald, Elizabeth ; Lee, Christopher ; Prather, Kimberly A ; Bertram, Timothy H</creator><creatorcontrib>Ryder, Olivia S ; Ault, Andrew P ; Cahill, John F ; Guasco, Timothy L ; Riedel, Theran P ; Cuadra-Rodriguez, Luis A ; Gaston, Cassandra J ; Fitzgerald, Elizabeth ; Lee, Christopher ; Prather, Kimberly A ; Bertram, Timothy H</creatorcontrib><description>The rates of heterogeneous reactions of trace gases with aerosol particles are complex functions of particle chemical composition, morphology, and phase state. Currently, the majority of model parametrizations of heterogeneous reaction kinetics focus on the population average of aerosol particle mass, assuming that individual particles have the same chemical composition as the average state. Here we assess the impact of particle mixing state on heterogeneous reaction kinetics using the N2O5 reactive uptake coefficient, γ(N2O5), and dependence on the particulate chloride-to-nitrate ratio (nCl–/nNO3 –). We describe the first simultaneous ambient observations of single particle chemical composition and in situ determinations of γ(N2O5). When accounting for particulate nCl–/nNO3 – mixing state, model parametrizations of γ(N2O5) continue to overpredict γ(N2O5) by more than a factor of 2 in polluted coastal regions, suggesting that chemical composition and physical phase state of particulate organics likely control γ(N2O5) in these air masses. In contrast, direct measurement of γ(N2O5) in air masses of marine origin are well captured by model parametrizations and reveal limited suppression of γ(N2O5), indicating that the organic mass fraction of fresh sea spray aerosol at this location does not suppress γ(N2O5). We provide an observation-based framework for assessing the impact of particle mixing state on gas–particle interactions.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es4042622</identifier><identifier>PMID: 24387143</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Aerosols - chemistry ; Air Pollutants - chemistry ; Applied sciences ; Atmospheric pollution ; Chlorides - chemistry ; Environmental Monitoring ; Exact sciences and technology ; Kinetics ; Models, Theoretical ; Nitrogen Oxides - chemistry ; Pollutants physicochemistry study: properties, effects, reactions, transport and distribution ; Pollution</subject><ispartof>Environmental science &amp; technology, 2014-02, Vol.48 (3), p.1618-1627</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es4042622$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es4042622$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28344703$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24387143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryder, Olivia S</creatorcontrib><creatorcontrib>Ault, Andrew P</creatorcontrib><creatorcontrib>Cahill, John F</creatorcontrib><creatorcontrib>Guasco, Timothy L</creatorcontrib><creatorcontrib>Riedel, Theran P</creatorcontrib><creatorcontrib>Cuadra-Rodriguez, Luis A</creatorcontrib><creatorcontrib>Gaston, Cassandra J</creatorcontrib><creatorcontrib>Fitzgerald, Elizabeth</creatorcontrib><creatorcontrib>Lee, Christopher</creatorcontrib><creatorcontrib>Prather, Kimberly A</creatorcontrib><creatorcontrib>Bertram, Timothy H</creatorcontrib><title>On the Role of Particle Inorganic Mixing State in the Reactive Uptake of N2O5 to Ambient Aerosol Particles</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The rates of heterogeneous reactions of trace gases with aerosol particles are complex functions of particle chemical composition, morphology, and phase state. Currently, the majority of model parametrizations of heterogeneous reaction kinetics focus on the population average of aerosol particle mass, assuming that individual particles have the same chemical composition as the average state. Here we assess the impact of particle mixing state on heterogeneous reaction kinetics using the N2O5 reactive uptake coefficient, γ(N2O5), and dependence on the particulate chloride-to-nitrate ratio (nCl–/nNO3 –). We describe the first simultaneous ambient observations of single particle chemical composition and in situ determinations of γ(N2O5). When accounting for particulate nCl–/nNO3 – mixing state, model parametrizations of γ(N2O5) continue to overpredict γ(N2O5) by more than a factor of 2 in polluted coastal regions, suggesting that chemical composition and physical phase state of particulate organics likely control γ(N2O5) in these air masses. In contrast, direct measurement of γ(N2O5) in air masses of marine origin are well captured by model parametrizations and reveal limited suppression of γ(N2O5), indicating that the organic mass fraction of fresh sea spray aerosol at this location does not suppress γ(N2O5). We provide an observation-based framework for assessing the impact of particle mixing state on gas–particle interactions.</description><subject>Aerosols - chemistry</subject><subject>Air Pollutants - chemistry</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Chlorides - chemistry</subject><subject>Environmental Monitoring</subject><subject>Exact sciences and technology</subject><subject>Kinetics</subject><subject>Models, Theoretical</subject><subject>Nitrogen Oxides - chemistry</subject><subject>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</subject><subject>Pollution</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpN0U1PwzAMBuAIgdgYHPgDKBckLoUkTr-OE-Jj0mAImMStcjN3ZHTNaDIE_54BY3CyD49fyTZjh1KcSqHkGXkttEqU2mJdGSsRxVkst1lXCAlRDslTh-15PxNCKBDZLusoDVkqNXTZbNTw8Ez83tXEXcXvsA3WrPpB49opNtbwG_tumyl_CBiI2zUnNMG-ER8vAr58T96qUcyD4_15aakJvE-t867eJPp9tlNh7elgXXtsfHnxeH4dDUdXg_P-MEKVyhDpJAVCnessrgRpTZVMsySmnPJElUlSJbEqQVRGTRBkOVFQxhXkKADTTJGBHjv5yV207nVJPhRz6w3VNTbklr6QOs8lAGT5ih6t6bKc06RYtHaO7Ufxe58VOF4D9AbrqsXGWP_nMtA6Ff8cGl_M3LJtVhsWUhRf_yk2_4FPjut9OA</recordid><startdate>20140204</startdate><enddate>20140204</enddate><creator>Ryder, Olivia S</creator><creator>Ault, Andrew P</creator><creator>Cahill, John F</creator><creator>Guasco, Timothy L</creator><creator>Riedel, Theran P</creator><creator>Cuadra-Rodriguez, Luis A</creator><creator>Gaston, Cassandra J</creator><creator>Fitzgerald, Elizabeth</creator><creator>Lee, Christopher</creator><creator>Prather, Kimberly A</creator><creator>Bertram, Timothy H</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20140204</creationdate><title>On the Role of Particle Inorganic Mixing State in the Reactive Uptake of N2O5 to Ambient Aerosol Particles</title><author>Ryder, Olivia S ; Ault, Andrew P ; Cahill, John F ; Guasco, Timothy L ; Riedel, Theran P ; Cuadra-Rodriguez, Luis A ; Gaston, Cassandra J ; Fitzgerald, Elizabeth ; Lee, Christopher ; Prather, Kimberly A ; Bertram, Timothy H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a271t-4673ea49485f0e44ef17865e9e962b66f652b30fc2da31bd23b5f39a03a782ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerosols - chemistry</topic><topic>Air Pollutants - chemistry</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Chlorides - chemistry</topic><topic>Environmental Monitoring</topic><topic>Exact sciences and technology</topic><topic>Kinetics</topic><topic>Models, Theoretical</topic><topic>Nitrogen Oxides - chemistry</topic><topic>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</topic><topic>Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryder, Olivia S</creatorcontrib><creatorcontrib>Ault, Andrew P</creatorcontrib><creatorcontrib>Cahill, John F</creatorcontrib><creatorcontrib>Guasco, Timothy L</creatorcontrib><creatorcontrib>Riedel, Theran P</creatorcontrib><creatorcontrib>Cuadra-Rodriguez, Luis A</creatorcontrib><creatorcontrib>Gaston, Cassandra J</creatorcontrib><creatorcontrib>Fitzgerald, Elizabeth</creatorcontrib><creatorcontrib>Lee, Christopher</creatorcontrib><creatorcontrib>Prather, Kimberly A</creatorcontrib><creatorcontrib>Bertram, Timothy H</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryder, Olivia S</au><au>Ault, Andrew P</au><au>Cahill, John F</au><au>Guasco, Timothy L</au><au>Riedel, Theran P</au><au>Cuadra-Rodriguez, Luis A</au><au>Gaston, Cassandra J</au><au>Fitzgerald, Elizabeth</au><au>Lee, Christopher</au><au>Prather, Kimberly A</au><au>Bertram, Timothy H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Role of Particle Inorganic Mixing State in the Reactive Uptake of N2O5 to Ambient Aerosol Particles</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2014-02-04</date><risdate>2014</risdate><volume>48</volume><issue>3</issue><spage>1618</spage><epage>1627</epage><pages>1618-1627</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>The rates of heterogeneous reactions of trace gases with aerosol particles are complex functions of particle chemical composition, morphology, and phase state. Currently, the majority of model parametrizations of heterogeneous reaction kinetics focus on the population average of aerosol particle mass, assuming that individual particles have the same chemical composition as the average state. Here we assess the impact of particle mixing state on heterogeneous reaction kinetics using the N2O5 reactive uptake coefficient, γ(N2O5), and dependence on the particulate chloride-to-nitrate ratio (nCl–/nNO3 –). We describe the first simultaneous ambient observations of single particle chemical composition and in situ determinations of γ(N2O5). When accounting for particulate nCl–/nNO3 – mixing state, model parametrizations of γ(N2O5) continue to overpredict γ(N2O5) by more than a factor of 2 in polluted coastal regions, suggesting that chemical composition and physical phase state of particulate organics likely control γ(N2O5) in these air masses. In contrast, direct measurement of γ(N2O5) in air masses of marine origin are well captured by model parametrizations and reveal limited suppression of γ(N2O5), indicating that the organic mass fraction of fresh sea spray aerosol at this location does not suppress γ(N2O5). We provide an observation-based framework for assessing the impact of particle mixing state on gas–particle interactions.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24387143</pmid><doi>10.1021/es4042622</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2014-02, Vol.48 (3), p.1618-1627
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1499133389
source MEDLINE; ACS Publications
subjects Aerosols - chemistry
Air Pollutants - chemistry
Applied sciences
Atmospheric pollution
Chlorides - chemistry
Environmental Monitoring
Exact sciences and technology
Kinetics
Models, Theoretical
Nitrogen Oxides - chemistry
Pollutants physicochemistry study: properties, effects, reactions, transport and distribution
Pollution
title On the Role of Particle Inorganic Mixing State in the Reactive Uptake of N2O5 to Ambient Aerosol Particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T16%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Role%20of%20Particle%20Inorganic%20Mixing%20State%20in%20the%20Reactive%20Uptake%20of%20N2O5%20to%20Ambient%20Aerosol%20Particles&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Ryder,%20Olivia%20S&rft.date=2014-02-04&rft.volume=48&rft.issue=3&rft.spage=1618&rft.epage=1627&rft.pages=1618-1627&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es4042622&rft_dat=%3Cproquest_pubme%3E1499133389%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499133389&rft_id=info:pmid/24387143&rfr_iscdi=true