Source Identification of PM2.5 in Steubenville, Ohio Using a Hybrid Method for Highly Time-Resolved Data

A new source-type identification method, Reduction and Species Clustering Using Episodes (ReSCUE), was developed to exploit the temporal synchronicity typically observed between ambient species in high time resolution fine particulate matter (PM2.5) data to form clusters that vary together. High tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2014-02, Vol.48 (3), p.1718-1726
Hauptverfasser: Vedantham, Ram, Landis, Matthew S, Olson, David, Pancras, Joseph Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1726
container_issue 3
container_start_page 1718
container_title Environmental science & technology
container_volume 48
creator Vedantham, Ram
Landis, Matthew S
Olson, David
Pancras, Joseph Patrick
description A new source-type identification method, Reduction and Species Clustering Using Episodes (ReSCUE), was developed to exploit the temporal synchronicity typically observed between ambient species in high time resolution fine particulate matter (PM2.5) data to form clusters that vary together. High time-resolution (30 min) PM2.5 sampling was conducted for a month during the summer of 2006 in Steubenville, OH, an EPA designated nonattainment area for the U.S. National Ambient Air Quality Standards (NAAQS). When the data were evaluated, the species clusters from ReSCUE matched extremely well with the source types identified by EPA Unmix demonstrating that ReSCUE is a valuable tool in identifying source types. Results from EPA Unmix show that contributions to PM2.5 are mostly from iron/steel manufacturing (36% ± 9%), crustal matter (33% ± 11%), and coal combustion (11% ± 19%). More importantly, ReSCUE was useful in (i) providing objective data driven guidance for the number of source factors and key fitting species for EPA Unmix, and (ii) detecting tenuous associations between some species and source types in the results derived by EPA Unmix.
doi_str_mv 10.1021/es402704n
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1499133172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1499133172</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-16adf224ef1851045c90a52b47b252e8b23d4cef98849a41728db3b405f643003</originalsourceid><addsrcrecordid>eNpFkU1PwkAYhDdGI4ge_ANmLyYeLL77UdoeDX5AAsEIJN6abfsuLCm72G1J-PfWiHqayzOTzAwh1wz6DDh7QC-BRyDtCemykEMQxiE7JV0AJoJEDD465ML7DQBwAfE56XAp4qh1dMl67poqRzou0NZGm1zVxlnqNH2b8n5IjaXzGpsM7d6UJd7T2do4uvTGrqiio0NWmYJOsV67gmpX0ZFZrcsDXZgtBu_oXbnHgj6pWl2SM61Kj1dH7ZHly_NiOAoms9fx8HESKCGiOmADVWjOJWrWdgAZ5gmokGcyynjIMc64KGSOOoljmSjJIh4XmcgkhHogBYDokbuf3F3lPhv0dbo1PseyVBZd41Mmk4QJ0Rpb9OaINtkWi3RXma2qDunvOi1wewSUz1WpK2Vz4_-5WEgZMfnPqdynm3ZQ2zZMGaTf76R_74gvdQV8SA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499133172</pqid></control><display><type>article</type><title>Source Identification of PM2.5 in Steubenville, Ohio Using a Hybrid Method for Highly Time-Resolved Data</title><source>ACS Publications</source><source>MEDLINE</source><creator>Vedantham, Ram ; Landis, Matthew S ; Olson, David ; Pancras, Joseph Patrick</creator><creatorcontrib>Vedantham, Ram ; Landis, Matthew S ; Olson, David ; Pancras, Joseph Patrick</creatorcontrib><description>A new source-type identification method, Reduction and Species Clustering Using Episodes (ReSCUE), was developed to exploit the temporal synchronicity typically observed between ambient species in high time resolution fine particulate matter (PM2.5) data to form clusters that vary together. High time-resolution (30 min) PM2.5 sampling was conducted for a month during the summer of 2006 in Steubenville, OH, an EPA designated nonattainment area for the U.S. National Ambient Air Quality Standards (NAAQS). When the data were evaluated, the species clusters from ReSCUE matched extremely well with the source types identified by EPA Unmix demonstrating that ReSCUE is a valuable tool in identifying source types. Results from EPA Unmix show that contributions to PM2.5 are mostly from iron/steel manufacturing (36% ± 9%), crustal matter (33% ± 11%), and coal combustion (11% ± 19%). More importantly, ReSCUE was useful in (i) providing objective data driven guidance for the number of source factors and key fitting species for EPA Unmix, and (ii) detecting tenuous associations between some species and source types in the results derived by EPA Unmix.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es402704n</identifier><identifier>PMID: 24387270</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Aerosols ; Air Pollutants - analysis ; Algorithms ; Applied sciences ; Atmospheric pollution ; Coal ; Environmental Monitoring - methods ; Exact sciences and technology ; Metallurgy ; Ohio ; Particle Size ; Particulate Matter - analysis ; Pollutants physicochemistry study: properties, effects, reactions, transport and distribution ; Pollution ; Power Plants ; Seasons ; Wind</subject><ispartof>Environmental science &amp; technology, 2014-02, Vol.48 (3), p.1718-1726</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es402704n$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es402704n$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28344714$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24387270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vedantham, Ram</creatorcontrib><creatorcontrib>Landis, Matthew S</creatorcontrib><creatorcontrib>Olson, David</creatorcontrib><creatorcontrib>Pancras, Joseph Patrick</creatorcontrib><title>Source Identification of PM2.5 in Steubenville, Ohio Using a Hybrid Method for Highly Time-Resolved Data</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>A new source-type identification method, Reduction and Species Clustering Using Episodes (ReSCUE), was developed to exploit the temporal synchronicity typically observed between ambient species in high time resolution fine particulate matter (PM2.5) data to form clusters that vary together. High time-resolution (30 min) PM2.5 sampling was conducted for a month during the summer of 2006 in Steubenville, OH, an EPA designated nonattainment area for the U.S. National Ambient Air Quality Standards (NAAQS). When the data were evaluated, the species clusters from ReSCUE matched extremely well with the source types identified by EPA Unmix demonstrating that ReSCUE is a valuable tool in identifying source types. Results from EPA Unmix show that contributions to PM2.5 are mostly from iron/steel manufacturing (36% ± 9%), crustal matter (33% ± 11%), and coal combustion (11% ± 19%). More importantly, ReSCUE was useful in (i) providing objective data driven guidance for the number of source factors and key fitting species for EPA Unmix, and (ii) detecting tenuous associations between some species and source types in the results derived by EPA Unmix.</description><subject>Aerosols</subject><subject>Air Pollutants - analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Coal</subject><subject>Environmental Monitoring - methods</subject><subject>Exact sciences and technology</subject><subject>Metallurgy</subject><subject>Ohio</subject><subject>Particle Size</subject><subject>Particulate Matter - analysis</subject><subject>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</subject><subject>Pollution</subject><subject>Power Plants</subject><subject>Seasons</subject><subject>Wind</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkU1PwkAYhDdGI4ge_ANmLyYeLL77UdoeDX5AAsEIJN6abfsuLCm72G1J-PfWiHqayzOTzAwh1wz6DDh7QC-BRyDtCemykEMQxiE7JV0AJoJEDD465ML7DQBwAfE56XAp4qh1dMl67poqRzou0NZGm1zVxlnqNH2b8n5IjaXzGpsM7d6UJd7T2do4uvTGrqiio0NWmYJOsV67gmpX0ZFZrcsDXZgtBu_oXbnHgj6pWl2SM61Kj1dH7ZHly_NiOAoms9fx8HESKCGiOmADVWjOJWrWdgAZ5gmokGcyynjIMc64KGSOOoljmSjJIh4XmcgkhHogBYDokbuf3F3lPhv0dbo1PseyVBZd41Mmk4QJ0Rpb9OaINtkWi3RXma2qDunvOi1wewSUz1WpK2Vz4_-5WEgZMfnPqdynm3ZQ2zZMGaTf76R_74gvdQV8SA</recordid><startdate>20140204</startdate><enddate>20140204</enddate><creator>Vedantham, Ram</creator><creator>Landis, Matthew S</creator><creator>Olson, David</creator><creator>Pancras, Joseph Patrick</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20140204</creationdate><title>Source Identification of PM2.5 in Steubenville, Ohio Using a Hybrid Method for Highly Time-Resolved Data</title><author>Vedantham, Ram ; Landis, Matthew S ; Olson, David ; Pancras, Joseph Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-16adf224ef1851045c90a52b47b252e8b23d4cef98849a41728db3b405f643003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerosols</topic><topic>Air Pollutants - analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Coal</topic><topic>Environmental Monitoring - methods</topic><topic>Exact sciences and technology</topic><topic>Metallurgy</topic><topic>Ohio</topic><topic>Particle Size</topic><topic>Particulate Matter - analysis</topic><topic>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</topic><topic>Pollution</topic><topic>Power Plants</topic><topic>Seasons</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vedantham, Ram</creatorcontrib><creatorcontrib>Landis, Matthew S</creatorcontrib><creatorcontrib>Olson, David</creatorcontrib><creatorcontrib>Pancras, Joseph Patrick</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vedantham, Ram</au><au>Landis, Matthew S</au><au>Olson, David</au><au>Pancras, Joseph Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Source Identification of PM2.5 in Steubenville, Ohio Using a Hybrid Method for Highly Time-Resolved Data</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2014-02-04</date><risdate>2014</risdate><volume>48</volume><issue>3</issue><spage>1718</spage><epage>1726</epage><pages>1718-1726</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>A new source-type identification method, Reduction and Species Clustering Using Episodes (ReSCUE), was developed to exploit the temporal synchronicity typically observed between ambient species in high time resolution fine particulate matter (PM2.5) data to form clusters that vary together. High time-resolution (30 min) PM2.5 sampling was conducted for a month during the summer of 2006 in Steubenville, OH, an EPA designated nonattainment area for the U.S. National Ambient Air Quality Standards (NAAQS). When the data were evaluated, the species clusters from ReSCUE matched extremely well with the source types identified by EPA Unmix demonstrating that ReSCUE is a valuable tool in identifying source types. Results from EPA Unmix show that contributions to PM2.5 are mostly from iron/steel manufacturing (36% ± 9%), crustal matter (33% ± 11%), and coal combustion (11% ± 19%). More importantly, ReSCUE was useful in (i) providing objective data driven guidance for the number of source factors and key fitting species for EPA Unmix, and (ii) detecting tenuous associations between some species and source types in the results derived by EPA Unmix.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24387270</pmid><doi>10.1021/es402704n</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2014-02, Vol.48 (3), p.1718-1726
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1499133172
source ACS Publications; MEDLINE
subjects Aerosols
Air Pollutants - analysis
Algorithms
Applied sciences
Atmospheric pollution
Coal
Environmental Monitoring - methods
Exact sciences and technology
Metallurgy
Ohio
Particle Size
Particulate Matter - analysis
Pollutants physicochemistry study: properties, effects, reactions, transport and distribution
Pollution
Power Plants
Seasons
Wind
title Source Identification of PM2.5 in Steubenville, Ohio Using a Hybrid Method for Highly Time-Resolved Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Source%20Identification%20of%20PM2.5%20in%20Steubenville,%20Ohio%20Using%20a%20Hybrid%20Method%20for%20Highly%20Time-Resolved%20Data&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Vedantham,%20Ram&rft.date=2014-02-04&rft.volume=48&rft.issue=3&rft.spage=1718&rft.epage=1726&rft.pages=1718-1726&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es402704n&rft_dat=%3Cproquest_pubme%3E1499133172%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499133172&rft_id=info:pmid/24387270&rfr_iscdi=true