Source Identification of PM2.5 in Steubenville, Ohio Using a Hybrid Method for Highly Time-Resolved Data
A new source-type identification method, Reduction and Species Clustering Using Episodes (ReSCUE), was developed to exploit the temporal synchronicity typically observed between ambient species in high time resolution fine particulate matter (PM2.5) data to form clusters that vary together. High tim...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2014-02, Vol.48 (3), p.1718-1726 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1726 |
---|---|
container_issue | 3 |
container_start_page | 1718 |
container_title | Environmental science & technology |
container_volume | 48 |
creator | Vedantham, Ram Landis, Matthew S Olson, David Pancras, Joseph Patrick |
description | A new source-type identification method, Reduction and Species Clustering Using Episodes (ReSCUE), was developed to exploit the temporal synchronicity typically observed between ambient species in high time resolution fine particulate matter (PM2.5) data to form clusters that vary together. High time-resolution (30 min) PM2.5 sampling was conducted for a month during the summer of 2006 in Steubenville, OH, an EPA designated nonattainment area for the U.S. National Ambient Air Quality Standards (NAAQS). When the data were evaluated, the species clusters from ReSCUE matched extremely well with the source types identified by EPA Unmix demonstrating that ReSCUE is a valuable tool in identifying source types. Results from EPA Unmix show that contributions to PM2.5 are mostly from iron/steel manufacturing (36% ± 9%), crustal matter (33% ± 11%), and coal combustion (11% ± 19%). More importantly, ReSCUE was useful in (i) providing objective data driven guidance for the number of source factors and key fitting species for EPA Unmix, and (ii) detecting tenuous associations between some species and source types in the results derived by EPA Unmix. |
doi_str_mv | 10.1021/es402704n |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1499133172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1499133172</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-16adf224ef1851045c90a52b47b252e8b23d4cef98849a41728db3b405f643003</originalsourceid><addsrcrecordid>eNpFkU1PwkAYhDdGI4ge_ANmLyYeLL77UdoeDX5AAsEIJN6abfsuLCm72G1J-PfWiHqayzOTzAwh1wz6DDh7QC-BRyDtCemykEMQxiE7JV0AJoJEDD465ML7DQBwAfE56XAp4qh1dMl67poqRzou0NZGm1zVxlnqNH2b8n5IjaXzGpsM7d6UJd7T2do4uvTGrqiio0NWmYJOsV67gmpX0ZFZrcsDXZgtBu_oXbnHgj6pWl2SM61Kj1dH7ZHly_NiOAoms9fx8HESKCGiOmADVWjOJWrWdgAZ5gmokGcyynjIMc64KGSOOoljmSjJIh4XmcgkhHogBYDokbuf3F3lPhv0dbo1PseyVBZd41Mmk4QJ0Rpb9OaINtkWi3RXma2qDunvOi1wewSUz1WpK2Vz4_-5WEgZMfnPqdynm3ZQ2zZMGaTf76R_74gvdQV8SA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499133172</pqid></control><display><type>article</type><title>Source Identification of PM2.5 in Steubenville, Ohio Using a Hybrid Method for Highly Time-Resolved Data</title><source>ACS Publications</source><source>MEDLINE</source><creator>Vedantham, Ram ; Landis, Matthew S ; Olson, David ; Pancras, Joseph Patrick</creator><creatorcontrib>Vedantham, Ram ; Landis, Matthew S ; Olson, David ; Pancras, Joseph Patrick</creatorcontrib><description>A new source-type identification method, Reduction and Species Clustering Using Episodes (ReSCUE), was developed to exploit the temporal synchronicity typically observed between ambient species in high time resolution fine particulate matter (PM2.5) data to form clusters that vary together. High time-resolution (30 min) PM2.5 sampling was conducted for a month during the summer of 2006 in Steubenville, OH, an EPA designated nonattainment area for the U.S. National Ambient Air Quality Standards (NAAQS). When the data were evaluated, the species clusters from ReSCUE matched extremely well with the source types identified by EPA Unmix demonstrating that ReSCUE is a valuable tool in identifying source types. Results from EPA Unmix show that contributions to PM2.5 are mostly from iron/steel manufacturing (36% ± 9%), crustal matter (33% ± 11%), and coal combustion (11% ± 19%). More importantly, ReSCUE was useful in (i) providing objective data driven guidance for the number of source factors and key fitting species for EPA Unmix, and (ii) detecting tenuous associations between some species and source types in the results derived by EPA Unmix.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es402704n</identifier><identifier>PMID: 24387270</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Aerosols ; Air Pollutants - analysis ; Algorithms ; Applied sciences ; Atmospheric pollution ; Coal ; Environmental Monitoring - methods ; Exact sciences and technology ; Metallurgy ; Ohio ; Particle Size ; Particulate Matter - analysis ; Pollutants physicochemistry study: properties, effects, reactions, transport and distribution ; Pollution ; Power Plants ; Seasons ; Wind</subject><ispartof>Environmental science & technology, 2014-02, Vol.48 (3), p.1718-1726</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es402704n$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es402704n$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28344714$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24387270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vedantham, Ram</creatorcontrib><creatorcontrib>Landis, Matthew S</creatorcontrib><creatorcontrib>Olson, David</creatorcontrib><creatorcontrib>Pancras, Joseph Patrick</creatorcontrib><title>Source Identification of PM2.5 in Steubenville, Ohio Using a Hybrid Method for Highly Time-Resolved Data</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>A new source-type identification method, Reduction and Species Clustering Using Episodes (ReSCUE), was developed to exploit the temporal synchronicity typically observed between ambient species in high time resolution fine particulate matter (PM2.5) data to form clusters that vary together. High time-resolution (30 min) PM2.5 sampling was conducted for a month during the summer of 2006 in Steubenville, OH, an EPA designated nonattainment area for the U.S. National Ambient Air Quality Standards (NAAQS). When the data were evaluated, the species clusters from ReSCUE matched extremely well with the source types identified by EPA Unmix demonstrating that ReSCUE is a valuable tool in identifying source types. Results from EPA Unmix show that contributions to PM2.5 are mostly from iron/steel manufacturing (36% ± 9%), crustal matter (33% ± 11%), and coal combustion (11% ± 19%). More importantly, ReSCUE was useful in (i) providing objective data driven guidance for the number of source factors and key fitting species for EPA Unmix, and (ii) detecting tenuous associations between some species and source types in the results derived by EPA Unmix.</description><subject>Aerosols</subject><subject>Air Pollutants - analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Coal</subject><subject>Environmental Monitoring - methods</subject><subject>Exact sciences and technology</subject><subject>Metallurgy</subject><subject>Ohio</subject><subject>Particle Size</subject><subject>Particulate Matter - analysis</subject><subject>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</subject><subject>Pollution</subject><subject>Power Plants</subject><subject>Seasons</subject><subject>Wind</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkU1PwkAYhDdGI4ge_ANmLyYeLL77UdoeDX5AAsEIJN6abfsuLCm72G1J-PfWiHqayzOTzAwh1wz6DDh7QC-BRyDtCemykEMQxiE7JV0AJoJEDD465ML7DQBwAfE56XAp4qh1dMl67poqRzou0NZGm1zVxlnqNH2b8n5IjaXzGpsM7d6UJd7T2do4uvTGrqiio0NWmYJOsV67gmpX0ZFZrcsDXZgtBu_oXbnHgj6pWl2SM61Kj1dH7ZHly_NiOAoms9fx8HESKCGiOmADVWjOJWrWdgAZ5gmokGcyynjIMc64KGSOOoljmSjJIh4XmcgkhHogBYDokbuf3F3lPhv0dbo1PseyVBZd41Mmk4QJ0Rpb9OaINtkWi3RXma2qDunvOi1wewSUz1WpK2Vz4_-5WEgZMfnPqdynm3ZQ2zZMGaTf76R_74gvdQV8SA</recordid><startdate>20140204</startdate><enddate>20140204</enddate><creator>Vedantham, Ram</creator><creator>Landis, Matthew S</creator><creator>Olson, David</creator><creator>Pancras, Joseph Patrick</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20140204</creationdate><title>Source Identification of PM2.5 in Steubenville, Ohio Using a Hybrid Method for Highly Time-Resolved Data</title><author>Vedantham, Ram ; Landis, Matthew S ; Olson, David ; Pancras, Joseph Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-16adf224ef1851045c90a52b47b252e8b23d4cef98849a41728db3b405f643003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerosols</topic><topic>Air Pollutants - analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Coal</topic><topic>Environmental Monitoring - methods</topic><topic>Exact sciences and technology</topic><topic>Metallurgy</topic><topic>Ohio</topic><topic>Particle Size</topic><topic>Particulate Matter - analysis</topic><topic>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</topic><topic>Pollution</topic><topic>Power Plants</topic><topic>Seasons</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vedantham, Ram</creatorcontrib><creatorcontrib>Landis, Matthew S</creatorcontrib><creatorcontrib>Olson, David</creatorcontrib><creatorcontrib>Pancras, Joseph Patrick</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vedantham, Ram</au><au>Landis, Matthew S</au><au>Olson, David</au><au>Pancras, Joseph Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Source Identification of PM2.5 in Steubenville, Ohio Using a Hybrid Method for Highly Time-Resolved Data</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2014-02-04</date><risdate>2014</risdate><volume>48</volume><issue>3</issue><spage>1718</spage><epage>1726</epage><pages>1718-1726</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>A new source-type identification method, Reduction and Species Clustering Using Episodes (ReSCUE), was developed to exploit the temporal synchronicity typically observed between ambient species in high time resolution fine particulate matter (PM2.5) data to form clusters that vary together. High time-resolution (30 min) PM2.5 sampling was conducted for a month during the summer of 2006 in Steubenville, OH, an EPA designated nonattainment area for the U.S. National Ambient Air Quality Standards (NAAQS). When the data were evaluated, the species clusters from ReSCUE matched extremely well with the source types identified by EPA Unmix demonstrating that ReSCUE is a valuable tool in identifying source types. Results from EPA Unmix show that contributions to PM2.5 are mostly from iron/steel manufacturing (36% ± 9%), crustal matter (33% ± 11%), and coal combustion (11% ± 19%). More importantly, ReSCUE was useful in (i) providing objective data driven guidance for the number of source factors and key fitting species for EPA Unmix, and (ii) detecting tenuous associations between some species and source types in the results derived by EPA Unmix.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24387270</pmid><doi>10.1021/es402704n</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2014-02, Vol.48 (3), p.1718-1726 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_1499133172 |
source | ACS Publications; MEDLINE |
subjects | Aerosols Air Pollutants - analysis Algorithms Applied sciences Atmospheric pollution Coal Environmental Monitoring - methods Exact sciences and technology Metallurgy Ohio Particle Size Particulate Matter - analysis Pollutants physicochemistry study: properties, effects, reactions, transport and distribution Pollution Power Plants Seasons Wind |
title | Source Identification of PM2.5 in Steubenville, Ohio Using a Hybrid Method for Highly Time-Resolved Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Source%20Identification%20of%20PM2.5%20in%20Steubenville,%20Ohio%20Using%20a%20Hybrid%20Method%20for%20Highly%20Time-Resolved%20Data&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Vedantham,%20Ram&rft.date=2014-02-04&rft.volume=48&rft.issue=3&rft.spage=1718&rft.epage=1726&rft.pages=1718-1726&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es402704n&rft_dat=%3Cproquest_pubme%3E1499133172%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499133172&rft_id=info:pmid/24387270&rfr_iscdi=true |