Mechanism of Saccharomyces cerevisiae yeast cell death induced by heat shock. Effect of cycloheximide on thermotolerance
The mechanism of yeast cell death induced by heat shock was found to be dependent on the intensity of heat exposure. Moderate (45°C) heat shock strongly increased the generation of reactive oxygen species (ROS) and cell death. Pretreatment with cycloheximide (at 30°C) suppressed cell death, but prod...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Moscow) 2014, Vol.79 (1), p.16-24 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | 1 |
container_start_page | 16 |
container_title | Biochemistry (Moscow) |
container_volume | 79 |
creator | Rikhvanov, E. G. Fedoseeva, I. V. Varakina, N. N. Rusaleva, T. M. Fedyaeva, A. V. |
description | The mechanism of yeast cell death induced by heat shock was found to be dependent on the intensity of heat exposure. Moderate (45°C) heat shock strongly increased the generation of reactive oxygen species (ROS) and cell death. Pretreatment with cycloheximide (at 30°C) suppressed cell death, but produced no effect on ROS production. The protective effect was absent if cycloheximide was added immediately before heat exposure and the cells were incubated with the drug during the heat treatment and recovery period. The rate of ROS production and protective effect of cycloheximide on viability were significantly decreased in the case of severe (50°C) heat shock. Treatment with cycloheximide at 39°C inhibited the induction of Hsp104 synthesis and suppressed the development of induced thermotolerance to severe shock (50°C), but it had no effect on induced thermotolerance to moderate (45°C) heat shock. At the same time, Hsp104 effectively protected cells from death independently of the intensity of heat exposure. These data indicate that moderate heat shock induced programmed cell death in the yeast cells, and cycloheximide suppressed this process by inhibiting general synthesis of proteins. |
doi_str_mv | 10.1134/S0006297914010039 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1499132068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A369914013</galeid><sourcerecordid>A369914013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-e544b3a6d441a46990ef0d07bba7371e6cb5254befa417988d0c84ddc111a3493</originalsourceid><addsrcrecordid>eNp1kUtv1TAQhS0EopfCD2CDLLFhk8s4dh5eVlUpSEUsCuvIsceNS2IXO6maf19Ht7xBXlgz852jGR1CXjLYM8bF20sAqEvZSCaAAXD5iOxYDW3BQcBjstvGxTY_Is9Sus5lCZI_JUelqFhZV3JH7j6iHpR3aaLB0kulcxXDtGpMVGPEW5ecQrqiSnNujCM1qOaBOm8WjYb2Kx1yg6Yh6K97emYt6nmz0qsew4B3bnIGafB0HjBOYQ4jRuU1PidPrBoTvnj4j8mXd2efT98XF5_OP5yeXBRacDkXWAnRc1UbIZgStZSAFgw0fa8a3jCsdV-VlejRKsEa2bYGdCuM0YwxxYXkx-TNwfcmhm8LprmbXNoOUR7DkjompGS8hLrN6Os_0OuwRJ-326hSCKib6id1pUbsnLdhjkpvpt0JzwtuWfBM7f9B5Wdwcjp4tC73fxOwg0DHkFJE291EN6m4dgy6Le3ur7Sz5tXDwks_ofmh-B5vBsoDkPLIX2H85aL_ut4DOM-yVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492440675</pqid></control><display><type>article</type><title>Mechanism of Saccharomyces cerevisiae yeast cell death induced by heat shock. Effect of cycloheximide on thermotolerance</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Rikhvanov, E. G. ; Fedoseeva, I. V. ; Varakina, N. N. ; Rusaleva, T. M. ; Fedyaeva, A. V.</creator><creatorcontrib>Rikhvanov, E. G. ; Fedoseeva, I. V. ; Varakina, N. N. ; Rusaleva, T. M. ; Fedyaeva, A. V.</creatorcontrib><description>The mechanism of yeast cell death induced by heat shock was found to be dependent on the intensity of heat exposure. Moderate (45°C) heat shock strongly increased the generation of reactive oxygen species (ROS) and cell death. Pretreatment with cycloheximide (at 30°C) suppressed cell death, but produced no effect on ROS production. The protective effect was absent if cycloheximide was added immediately before heat exposure and the cells were incubated with the drug during the heat treatment and recovery period. The rate of ROS production and protective effect of cycloheximide on viability were significantly decreased in the case of severe (50°C) heat shock. Treatment with cycloheximide at 39°C inhibited the induction of Hsp104 synthesis and suppressed the development of induced thermotolerance to severe shock (50°C), but it had no effect on induced thermotolerance to moderate (45°C) heat shock. At the same time, Hsp104 effectively protected cells from death independently of the intensity of heat exposure. These data indicate that moderate heat shock induced programmed cell death in the yeast cells, and cycloheximide suppressed this process by inhibiting general synthesis of proteins.</description><identifier>ISSN: 0006-2979</identifier><identifier>EISSN: 1608-3040</identifier><identifier>DOI: 10.1134/S0006297914010039</identifier><identifier>PMID: 24512659</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Bioorganic Chemistry ; Brewer's yeast ; Cell death ; Cycloheximide - chemistry ; Cycloheximide - pharmacology ; Heat ; Heat shock proteins ; Heat treatment ; Heat-Shock Proteins - chemistry ; Heat-Shock Proteins - metabolism ; Life Sciences ; Microbiology ; Mortality ; Physiological aspects ; Protein synthesis ; Protein Synthesis Inhibitors - chemistry ; Protein Synthesis Inhibitors - pharmacology ; Reactive Oxygen Species - metabolism ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; Temperature ; Yeast ; Yeasts</subject><ispartof>Biochemistry (Moscow), 2014, Vol.79 (1), p.16-24</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-e544b3a6d441a46990ef0d07bba7371e6cb5254befa417988d0c84ddc111a3493</citedby><cites>FETCH-LOGICAL-c439t-e544b3a6d441a46990ef0d07bba7371e6cb5254befa417988d0c84ddc111a3493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0006297914010039$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0006297914010039$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24512659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rikhvanov, E. G.</creatorcontrib><creatorcontrib>Fedoseeva, I. V.</creatorcontrib><creatorcontrib>Varakina, N. N.</creatorcontrib><creatorcontrib>Rusaleva, T. M.</creatorcontrib><creatorcontrib>Fedyaeva, A. V.</creatorcontrib><title>Mechanism of Saccharomyces cerevisiae yeast cell death induced by heat shock. Effect of cycloheximide on thermotolerance</title><title>Biochemistry (Moscow)</title><addtitle>Biochemistry Moscow</addtitle><addtitle>Biochemistry (Mosc)</addtitle><description>The mechanism of yeast cell death induced by heat shock was found to be dependent on the intensity of heat exposure. Moderate (45°C) heat shock strongly increased the generation of reactive oxygen species (ROS) and cell death. Pretreatment with cycloheximide (at 30°C) suppressed cell death, but produced no effect on ROS production. The protective effect was absent if cycloheximide was added immediately before heat exposure and the cells were incubated with the drug during the heat treatment and recovery period. The rate of ROS production and protective effect of cycloheximide on viability were significantly decreased in the case of severe (50°C) heat shock. Treatment with cycloheximide at 39°C inhibited the induction of Hsp104 synthesis and suppressed the development of induced thermotolerance to severe shock (50°C), but it had no effect on induced thermotolerance to moderate (45°C) heat shock. At the same time, Hsp104 effectively protected cells from death independently of the intensity of heat exposure. These data indicate that moderate heat shock induced programmed cell death in the yeast cells, and cycloheximide suppressed this process by inhibiting general synthesis of proteins.</description><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bioorganic Chemistry</subject><subject>Brewer's yeast</subject><subject>Cell death</subject><subject>Cycloheximide - chemistry</subject><subject>Cycloheximide - pharmacology</subject><subject>Heat</subject><subject>Heat shock proteins</subject><subject>Heat treatment</subject><subject>Heat-Shock Proteins - chemistry</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Mortality</subject><subject>Physiological aspects</subject><subject>Protein synthesis</subject><subject>Protein Synthesis Inhibitors - chemistry</subject><subject>Protein Synthesis Inhibitors - pharmacology</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Temperature</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0006-2979</issn><issn>1608-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtv1TAQhS0EopfCD2CDLLFhk8s4dh5eVlUpSEUsCuvIsceNS2IXO6maf19Ht7xBXlgz852jGR1CXjLYM8bF20sAqEvZSCaAAXD5iOxYDW3BQcBjstvGxTY_Is9Sus5lCZI_JUelqFhZV3JH7j6iHpR3aaLB0kulcxXDtGpMVGPEW5ecQrqiSnNujCM1qOaBOm8WjYb2Kx1yg6Yh6K97emYt6nmz0qsew4B3bnIGafB0HjBOYQ4jRuU1PidPrBoTvnj4j8mXd2efT98XF5_OP5yeXBRacDkXWAnRc1UbIZgStZSAFgw0fa8a3jCsdV-VlejRKsEa2bYGdCuM0YwxxYXkx-TNwfcmhm8LprmbXNoOUR7DkjompGS8hLrN6Os_0OuwRJ-326hSCKib6id1pUbsnLdhjkpvpt0JzwtuWfBM7f9B5Wdwcjp4tC73fxOwg0DHkFJE291EN6m4dgy6Le3ur7Sz5tXDwks_ofmh-B5vBsoDkPLIX2H85aL_ut4DOM-yVQ</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Rikhvanov, E. G.</creator><creator>Fedoseeva, I. V.</creator><creator>Varakina, N. N.</creator><creator>Rusaleva, T. M.</creator><creator>Fedyaeva, A. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>2014</creationdate><title>Mechanism of Saccharomyces cerevisiae yeast cell death induced by heat shock. Effect of cycloheximide on thermotolerance</title><author>Rikhvanov, E. G. ; Fedoseeva, I. V. ; Varakina, N. N. ; Rusaleva, T. M. ; Fedyaeva, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-e544b3a6d441a46990ef0d07bba7371e6cb5254befa417988d0c84ddc111a3493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bioorganic Chemistry</topic><topic>Brewer's yeast</topic><topic>Cell death</topic><topic>Cycloheximide - chemistry</topic><topic>Cycloheximide - pharmacology</topic><topic>Heat</topic><topic>Heat shock proteins</topic><topic>Heat treatment</topic><topic>Heat-Shock Proteins - chemistry</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Mortality</topic><topic>Physiological aspects</topic><topic>Protein synthesis</topic><topic>Protein Synthesis Inhibitors - chemistry</topic><topic>Protein Synthesis Inhibitors - pharmacology</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Temperature</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rikhvanov, E. G.</creatorcontrib><creatorcontrib>Fedoseeva, I. V.</creatorcontrib><creatorcontrib>Varakina, N. N.</creatorcontrib><creatorcontrib>Rusaleva, T. M.</creatorcontrib><creatorcontrib>Fedyaeva, A. V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Moscow)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rikhvanov, E. G.</au><au>Fedoseeva, I. V.</au><au>Varakina, N. N.</au><au>Rusaleva, T. M.</au><au>Fedyaeva, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Saccharomyces cerevisiae yeast cell death induced by heat shock. Effect of cycloheximide on thermotolerance</atitle><jtitle>Biochemistry (Moscow)</jtitle><stitle>Biochemistry Moscow</stitle><addtitle>Biochemistry (Mosc)</addtitle><date>2014</date><risdate>2014</risdate><volume>79</volume><issue>1</issue><spage>16</spage><epage>24</epage><pages>16-24</pages><issn>0006-2979</issn><eissn>1608-3040</eissn><abstract>The mechanism of yeast cell death induced by heat shock was found to be dependent on the intensity of heat exposure. Moderate (45°C) heat shock strongly increased the generation of reactive oxygen species (ROS) and cell death. Pretreatment with cycloheximide (at 30°C) suppressed cell death, but produced no effect on ROS production. The protective effect was absent if cycloheximide was added immediately before heat exposure and the cells were incubated with the drug during the heat treatment and recovery period. The rate of ROS production and protective effect of cycloheximide on viability were significantly decreased in the case of severe (50°C) heat shock. Treatment with cycloheximide at 39°C inhibited the induction of Hsp104 synthesis and suppressed the development of induced thermotolerance to severe shock (50°C), but it had no effect on induced thermotolerance to moderate (45°C) heat shock. At the same time, Hsp104 effectively protected cells from death independently of the intensity of heat exposure. These data indicate that moderate heat shock induced programmed cell death in the yeast cells, and cycloheximide suppressed this process by inhibiting general synthesis of proteins.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>24512659</pmid><doi>10.1134/S0006297914010039</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2979 |
ispartof | Biochemistry (Moscow), 2014, Vol.79 (1), p.16-24 |
issn | 0006-2979 1608-3040 |
language | eng |
recordid | cdi_proquest_miscellaneous_1499132068 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Apoptosis Biochemistry Biomedical and Life Sciences Biomedicine Bioorganic Chemistry Brewer's yeast Cell death Cycloheximide - chemistry Cycloheximide - pharmacology Heat Heat shock proteins Heat treatment Heat-Shock Proteins - chemistry Heat-Shock Proteins - metabolism Life Sciences Microbiology Mortality Physiological aspects Protein synthesis Protein Synthesis Inhibitors - chemistry Protein Synthesis Inhibitors - pharmacology Reactive Oxygen Species - metabolism Saccharomyces cerevisiae - drug effects Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism Temperature Yeast Yeasts |
title | Mechanism of Saccharomyces cerevisiae yeast cell death induced by heat shock. Effect of cycloheximide on thermotolerance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A48%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Saccharomyces%20cerevisiae%20yeast%20cell%20death%20induced%20by%20heat%20shock.%20Effect%20of%20cycloheximide%20on%20thermotolerance&rft.jtitle=Biochemistry%20(Moscow)&rft.au=Rikhvanov,%20E.%20G.&rft.date=2014&rft.volume=79&rft.issue=1&rft.spage=16&rft.epage=24&rft.pages=16-24&rft.issn=0006-2979&rft.eissn=1608-3040&rft_id=info:doi/10.1134/S0006297914010039&rft_dat=%3Cgale_proqu%3EA369914013%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492440675&rft_id=info:pmid/24512659&rft_galeid=A369914013&rfr_iscdi=true |