Mechanism of Saccharomyces cerevisiae yeast cell death induced by heat shock. Effect of cycloheximide on thermotolerance

The mechanism of yeast cell death induced by heat shock was found to be dependent on the intensity of heat exposure. Moderate (45°C) heat shock strongly increased the generation of reactive oxygen species (ROS) and cell death. Pretreatment with cycloheximide (at 30°C) suppressed cell death, but prod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Moscow) 2014, Vol.79 (1), p.16-24
Hauptverfasser: Rikhvanov, E. G., Fedoseeva, I. V., Varakina, N. N., Rusaleva, T. M., Fedyaeva, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 1
container_start_page 16
container_title Biochemistry (Moscow)
container_volume 79
creator Rikhvanov, E. G.
Fedoseeva, I. V.
Varakina, N. N.
Rusaleva, T. M.
Fedyaeva, A. V.
description The mechanism of yeast cell death induced by heat shock was found to be dependent on the intensity of heat exposure. Moderate (45°C) heat shock strongly increased the generation of reactive oxygen species (ROS) and cell death. Pretreatment with cycloheximide (at 30°C) suppressed cell death, but produced no effect on ROS production. The protective effect was absent if cycloheximide was added immediately before heat exposure and the cells were incubated with the drug during the heat treatment and recovery period. The rate of ROS production and protective effect of cycloheximide on viability were significantly decreased in the case of severe (50°C) heat shock. Treatment with cycloheximide at 39°C inhibited the induction of Hsp104 synthesis and suppressed the development of induced thermotolerance to severe shock (50°C), but it had no effect on induced thermotolerance to moderate (45°C) heat shock. At the same time, Hsp104 effectively protected cells from death independently of the intensity of heat exposure. These data indicate that moderate heat shock induced programmed cell death in the yeast cells, and cycloheximide suppressed this process by inhibiting general synthesis of proteins.
doi_str_mv 10.1134/S0006297914010039
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1499132068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A369914013</galeid><sourcerecordid>A369914013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-e544b3a6d441a46990ef0d07bba7371e6cb5254befa417988d0c84ddc111a3493</originalsourceid><addsrcrecordid>eNp1kUtv1TAQhS0EopfCD2CDLLFhk8s4dh5eVlUpSEUsCuvIsceNS2IXO6maf19Ht7xBXlgz852jGR1CXjLYM8bF20sAqEvZSCaAAXD5iOxYDW3BQcBjstvGxTY_Is9Sus5lCZI_JUelqFhZV3JH7j6iHpR3aaLB0kulcxXDtGpMVGPEW5ecQrqiSnNujCM1qOaBOm8WjYb2Kx1yg6Yh6K97emYt6nmz0qsew4B3bnIGafB0HjBOYQ4jRuU1PidPrBoTvnj4j8mXd2efT98XF5_OP5yeXBRacDkXWAnRc1UbIZgStZSAFgw0fa8a3jCsdV-VlejRKsEa2bYGdCuM0YwxxYXkx-TNwfcmhm8LprmbXNoOUR7DkjompGS8hLrN6Os_0OuwRJ-326hSCKib6id1pUbsnLdhjkpvpt0JzwtuWfBM7f9B5Wdwcjp4tC73fxOwg0DHkFJE291EN6m4dgy6Le3ur7Sz5tXDwks_ofmh-B5vBsoDkPLIX2H85aL_ut4DOM-yVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492440675</pqid></control><display><type>article</type><title>Mechanism of Saccharomyces cerevisiae yeast cell death induced by heat shock. Effect of cycloheximide on thermotolerance</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Rikhvanov, E. G. ; Fedoseeva, I. V. ; Varakina, N. N. ; Rusaleva, T. M. ; Fedyaeva, A. V.</creator><creatorcontrib>Rikhvanov, E. G. ; Fedoseeva, I. V. ; Varakina, N. N. ; Rusaleva, T. M. ; Fedyaeva, A. V.</creatorcontrib><description>The mechanism of yeast cell death induced by heat shock was found to be dependent on the intensity of heat exposure. Moderate (45°C) heat shock strongly increased the generation of reactive oxygen species (ROS) and cell death. Pretreatment with cycloheximide (at 30°C) suppressed cell death, but produced no effect on ROS production. The protective effect was absent if cycloheximide was added immediately before heat exposure and the cells were incubated with the drug during the heat treatment and recovery period. The rate of ROS production and protective effect of cycloheximide on viability were significantly decreased in the case of severe (50°C) heat shock. Treatment with cycloheximide at 39°C inhibited the induction of Hsp104 synthesis and suppressed the development of induced thermotolerance to severe shock (50°C), but it had no effect on induced thermotolerance to moderate (45°C) heat shock. At the same time, Hsp104 effectively protected cells from death independently of the intensity of heat exposure. These data indicate that moderate heat shock induced programmed cell death in the yeast cells, and cycloheximide suppressed this process by inhibiting general synthesis of proteins.</description><identifier>ISSN: 0006-2979</identifier><identifier>EISSN: 1608-3040</identifier><identifier>DOI: 10.1134/S0006297914010039</identifier><identifier>PMID: 24512659</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Bioorganic Chemistry ; Brewer's yeast ; Cell death ; Cycloheximide - chemistry ; Cycloheximide - pharmacology ; Heat ; Heat shock proteins ; Heat treatment ; Heat-Shock Proteins - chemistry ; Heat-Shock Proteins - metabolism ; Life Sciences ; Microbiology ; Mortality ; Physiological aspects ; Protein synthesis ; Protein Synthesis Inhibitors - chemistry ; Protein Synthesis Inhibitors - pharmacology ; Reactive Oxygen Species - metabolism ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; Temperature ; Yeast ; Yeasts</subject><ispartof>Biochemistry (Moscow), 2014, Vol.79 (1), p.16-24</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-e544b3a6d441a46990ef0d07bba7371e6cb5254befa417988d0c84ddc111a3493</citedby><cites>FETCH-LOGICAL-c439t-e544b3a6d441a46990ef0d07bba7371e6cb5254befa417988d0c84ddc111a3493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0006297914010039$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0006297914010039$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24512659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rikhvanov, E. G.</creatorcontrib><creatorcontrib>Fedoseeva, I. V.</creatorcontrib><creatorcontrib>Varakina, N. N.</creatorcontrib><creatorcontrib>Rusaleva, T. M.</creatorcontrib><creatorcontrib>Fedyaeva, A. V.</creatorcontrib><title>Mechanism of Saccharomyces cerevisiae yeast cell death induced by heat shock. Effect of cycloheximide on thermotolerance</title><title>Biochemistry (Moscow)</title><addtitle>Biochemistry Moscow</addtitle><addtitle>Biochemistry (Mosc)</addtitle><description>The mechanism of yeast cell death induced by heat shock was found to be dependent on the intensity of heat exposure. Moderate (45°C) heat shock strongly increased the generation of reactive oxygen species (ROS) and cell death. Pretreatment with cycloheximide (at 30°C) suppressed cell death, but produced no effect on ROS production. The protective effect was absent if cycloheximide was added immediately before heat exposure and the cells were incubated with the drug during the heat treatment and recovery period. The rate of ROS production and protective effect of cycloheximide on viability were significantly decreased in the case of severe (50°C) heat shock. Treatment with cycloheximide at 39°C inhibited the induction of Hsp104 synthesis and suppressed the development of induced thermotolerance to severe shock (50°C), but it had no effect on induced thermotolerance to moderate (45°C) heat shock. At the same time, Hsp104 effectively protected cells from death independently of the intensity of heat exposure. These data indicate that moderate heat shock induced programmed cell death in the yeast cells, and cycloheximide suppressed this process by inhibiting general synthesis of proteins.</description><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bioorganic Chemistry</subject><subject>Brewer's yeast</subject><subject>Cell death</subject><subject>Cycloheximide - chemistry</subject><subject>Cycloheximide - pharmacology</subject><subject>Heat</subject><subject>Heat shock proteins</subject><subject>Heat treatment</subject><subject>Heat-Shock Proteins - chemistry</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Mortality</subject><subject>Physiological aspects</subject><subject>Protein synthesis</subject><subject>Protein Synthesis Inhibitors - chemistry</subject><subject>Protein Synthesis Inhibitors - pharmacology</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Temperature</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0006-2979</issn><issn>1608-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtv1TAQhS0EopfCD2CDLLFhk8s4dh5eVlUpSEUsCuvIsceNS2IXO6maf19Ht7xBXlgz852jGR1CXjLYM8bF20sAqEvZSCaAAXD5iOxYDW3BQcBjstvGxTY_Is9Sus5lCZI_JUelqFhZV3JH7j6iHpR3aaLB0kulcxXDtGpMVGPEW5ecQrqiSnNujCM1qOaBOm8WjYb2Kx1yg6Yh6K97emYt6nmz0qsew4B3bnIGafB0HjBOYQ4jRuU1PidPrBoTvnj4j8mXd2efT98XF5_OP5yeXBRacDkXWAnRc1UbIZgStZSAFgw0fa8a3jCsdV-VlejRKsEa2bYGdCuM0YwxxYXkx-TNwfcmhm8LprmbXNoOUR7DkjompGS8hLrN6Os_0OuwRJ-326hSCKib6id1pUbsnLdhjkpvpt0JzwtuWfBM7f9B5Wdwcjp4tC73fxOwg0DHkFJE291EN6m4dgy6Le3ur7Sz5tXDwks_ofmh-B5vBsoDkPLIX2H85aL_ut4DOM-yVQ</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Rikhvanov, E. G.</creator><creator>Fedoseeva, I. V.</creator><creator>Varakina, N. N.</creator><creator>Rusaleva, T. M.</creator><creator>Fedyaeva, A. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>2014</creationdate><title>Mechanism of Saccharomyces cerevisiae yeast cell death induced by heat shock. Effect of cycloheximide on thermotolerance</title><author>Rikhvanov, E. G. ; Fedoseeva, I. V. ; Varakina, N. N. ; Rusaleva, T. M. ; Fedyaeva, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-e544b3a6d441a46990ef0d07bba7371e6cb5254befa417988d0c84ddc111a3493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bioorganic Chemistry</topic><topic>Brewer's yeast</topic><topic>Cell death</topic><topic>Cycloheximide - chemistry</topic><topic>Cycloheximide - pharmacology</topic><topic>Heat</topic><topic>Heat shock proteins</topic><topic>Heat treatment</topic><topic>Heat-Shock Proteins - chemistry</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Mortality</topic><topic>Physiological aspects</topic><topic>Protein synthesis</topic><topic>Protein Synthesis Inhibitors - chemistry</topic><topic>Protein Synthesis Inhibitors - pharmacology</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Temperature</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rikhvanov, E. G.</creatorcontrib><creatorcontrib>Fedoseeva, I. V.</creatorcontrib><creatorcontrib>Varakina, N. N.</creatorcontrib><creatorcontrib>Rusaleva, T. M.</creatorcontrib><creatorcontrib>Fedyaeva, A. V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Moscow)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rikhvanov, E. G.</au><au>Fedoseeva, I. V.</au><au>Varakina, N. N.</au><au>Rusaleva, T. M.</au><au>Fedyaeva, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Saccharomyces cerevisiae yeast cell death induced by heat shock. Effect of cycloheximide on thermotolerance</atitle><jtitle>Biochemistry (Moscow)</jtitle><stitle>Biochemistry Moscow</stitle><addtitle>Biochemistry (Mosc)</addtitle><date>2014</date><risdate>2014</risdate><volume>79</volume><issue>1</issue><spage>16</spage><epage>24</epage><pages>16-24</pages><issn>0006-2979</issn><eissn>1608-3040</eissn><abstract>The mechanism of yeast cell death induced by heat shock was found to be dependent on the intensity of heat exposure. Moderate (45°C) heat shock strongly increased the generation of reactive oxygen species (ROS) and cell death. Pretreatment with cycloheximide (at 30°C) suppressed cell death, but produced no effect on ROS production. The protective effect was absent if cycloheximide was added immediately before heat exposure and the cells were incubated with the drug during the heat treatment and recovery period. The rate of ROS production and protective effect of cycloheximide on viability were significantly decreased in the case of severe (50°C) heat shock. Treatment with cycloheximide at 39°C inhibited the induction of Hsp104 synthesis and suppressed the development of induced thermotolerance to severe shock (50°C), but it had no effect on induced thermotolerance to moderate (45°C) heat shock. At the same time, Hsp104 effectively protected cells from death independently of the intensity of heat exposure. These data indicate that moderate heat shock induced programmed cell death in the yeast cells, and cycloheximide suppressed this process by inhibiting general synthesis of proteins.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>24512659</pmid><doi>10.1134/S0006297914010039</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2979
ispartof Biochemistry (Moscow), 2014, Vol.79 (1), p.16-24
issn 0006-2979
1608-3040
language eng
recordid cdi_proquest_miscellaneous_1499132068
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Apoptosis
Biochemistry
Biomedical and Life Sciences
Biomedicine
Bioorganic Chemistry
Brewer's yeast
Cell death
Cycloheximide - chemistry
Cycloheximide - pharmacology
Heat
Heat shock proteins
Heat treatment
Heat-Shock Proteins - chemistry
Heat-Shock Proteins - metabolism
Life Sciences
Microbiology
Mortality
Physiological aspects
Protein synthesis
Protein Synthesis Inhibitors - chemistry
Protein Synthesis Inhibitors - pharmacology
Reactive Oxygen Species - metabolism
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - metabolism
Temperature
Yeast
Yeasts
title Mechanism of Saccharomyces cerevisiae yeast cell death induced by heat shock. Effect of cycloheximide on thermotolerance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A48%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Saccharomyces%20cerevisiae%20yeast%20cell%20death%20induced%20by%20heat%20shock.%20Effect%20of%20cycloheximide%20on%20thermotolerance&rft.jtitle=Biochemistry%20(Moscow)&rft.au=Rikhvanov,%20E.%20G.&rft.date=2014&rft.volume=79&rft.issue=1&rft.spage=16&rft.epage=24&rft.pages=16-24&rft.issn=0006-2979&rft.eissn=1608-3040&rft_id=info:doi/10.1134/S0006297914010039&rft_dat=%3Cgale_proqu%3EA369914013%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492440675&rft_id=info:pmid/24512659&rft_galeid=A369914013&rfr_iscdi=true