Influence and predictive capacity of climate anomalies on daily to decadal extremes in canopy photosynthesis

Significant advances have been made over the past decades in capabilities to simulate diurnal and seasonal variation of leaf-level and canopy-scale photosynthesis in temperate and boreal forests. However, long-term prediction of future forest productivity in a changing climate may be more dependent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photosynthesis research 2014-02, Vol.119 (1-2), p.31-47
1. Verfasser: Desai, Ankur R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue 1-2
container_start_page 31
container_title Photosynthesis research
container_volume 119
creator Desai, Ankur R
description Significant advances have been made over the past decades in capabilities to simulate diurnal and seasonal variation of leaf-level and canopy-scale photosynthesis in temperate and boreal forests. However, long-term prediction of future forest productivity in a changing climate may be more dependent on how climate and biological anomalies influence extremes in interannual to decadal variability of canopy ecosystem carbon exchanges. These exchanges can differ markedly from leaf level responses, especially owing to the prevalence of long lags in nutrient and water cycling. Until recently, multiple long-term (10+ year) high temporal frequency (daily) observations of canopy exchange were not available to reliably assess this claim. An analysis of one of the longest running North American eddy covariance flux towers reveals that single climate variables do not adequately explain carbon exchange anomalies beyond the seasonal timescale. Daily to weekly lagged anomalies of photosynthesis positively autocorrelate with daily photosynthesis. This effect suggests a negative feedback in photosynthetic response to climate extremes, such as anomalies in evapotranspiration and maximum temperature. Moisture stress in the prior season did inhibit photosynthesis, but mechanisms are difficult to assess. A complex interplay of integrated and lagged productivity and moisture-limiting factors indicate a critical role of seasonal thresholds that limit growing season length and peak productivity. These results lead toward a new conceptual framework for improving earth system models with long-term flux tower observations.
doi_str_mv 10.1007/s11120-013-9925-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1499125252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A358058080</galeid><sourcerecordid>A358058080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-1c76285bd31e4c5a95066b864d77d58f525e4a37ca6ba64c53ef0697f42dd2b73</originalsourceid><addsrcrecordid>eNp9kk1rFTEUhgdR7LX6A9xowI0upuZjkplZluLHhYJg7TpkkjO3KZlkTDLi9Neby1SxLiSBQM7zvpycN1X1kuAzgnH7PhFCKK4xYXXfU17fPap2hLes5rjtH1c7TISoO97zk-pZSrcY404Q9rQ6oQ1uO8bZrnJ7P7oFvAakvEFzBGN1tj8AaTUrbfOKwoi0s5PKRyRMyllIKHhklHUrygEZ0Mooh-BnjjCVovVF7cO8ovkm5JBWn28g2fS8ejIql-DF_XlaXX_88O3ic3355dP-4vyy1pzxXBPdCtrxwTACjeaq51iIoRONaVvDu5FTDo1irVZiUKIQDEYs-nZsqDF0aNlp9XbznWP4vkDKcrJJg3PKQ1iSJE3fE1psaEHf_IPehiX60l2hRC8IZpgV6myjDsqBtH4MOSpdloHJ6uBhtOX-nPEOl93hInj3QFCYXMZzUEtKcn_19SFLNlbHkFKEUc6xjDuukmB5zFluOcuSszzmLO-K5tV928swgfmj-B1sAegGpFLyB4h_ves_rq830aiCVIdok7y-opg0x5_DcEPYL2XLu8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1469610303</pqid></control><display><type>article</type><title>Influence and predictive capacity of climate anomalies on daily to decadal extremes in canopy photosynthesis</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Desai, Ankur R</creator><creatorcontrib>Desai, Ankur R</creatorcontrib><description>Significant advances have been made over the past decades in capabilities to simulate diurnal and seasonal variation of leaf-level and canopy-scale photosynthesis in temperate and boreal forests. However, long-term prediction of future forest productivity in a changing climate may be more dependent on how climate and biological anomalies influence extremes in interannual to decadal variability of canopy ecosystem carbon exchanges. These exchanges can differ markedly from leaf level responses, especially owing to the prevalence of long lags in nutrient and water cycling. Until recently, multiple long-term (10+ year) high temporal frequency (daily) observations of canopy exchange were not available to reliably assess this claim. An analysis of one of the longest running North American eddy covariance flux towers reveals that single climate variables do not adequately explain carbon exchange anomalies beyond the seasonal timescale. Daily to weekly lagged anomalies of photosynthesis positively autocorrelate with daily photosynthesis. This effect suggests a negative feedback in photosynthetic response to climate extremes, such as anomalies in evapotranspiration and maximum temperature. Moisture stress in the prior season did inhibit photosynthesis, but mechanisms are difficult to assess. A complex interplay of integrated and lagged productivity and moisture-limiting factors indicate a critical role of seasonal thresholds that limit growing season length and peak productivity. These results lead toward a new conceptual framework for improving earth system models with long-term flux tower observations.</description><identifier>ISSN: 0166-8595</identifier><identifier>EISSN: 1573-5079</identifier><identifier>DOI: 10.1007/s11120-013-9925-z</identifier><identifier>PMID: 24078353</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>Analysis ; Biochemistry ; Biomedical and Life Sciences ; boreal forests ; canopy ; carbon ; Carbon - metabolism ; Carbon cycle ; Carbon cycle (Biogeochemistry) ; Climate ; Climate science ; Ecosystems ; eddy covariance ; evapotranspiration ; growing season ; Industrial productivity ; leaves ; Life Sciences ; Light ; Models, Biological ; Models, Theoretical ; North America ; Photosynthesis ; Photosynthesis - physiology ; Phytochemistry ; Plant Genetics and Genomics ; Plant Physiology ; Plant Sciences ; prediction ; Regular Paper ; seasonal variation ; Seasons ; Spectrum analysis ; Temperature ; Trees - physiology ; Water ; Weather</subject><ispartof>Photosynthesis research, 2014-02, Vol.119 (1-2), p.31-47</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Springer Science+Business Media Dordrecht 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-1c76285bd31e4c5a95066b864d77d58f525e4a37ca6ba64c53ef0697f42dd2b73</citedby><cites>FETCH-LOGICAL-c535t-1c76285bd31e4c5a95066b864d77d58f525e4a37ca6ba64c53ef0697f42dd2b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11120-013-9925-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11120-013-9925-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24078353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Desai, Ankur R</creatorcontrib><title>Influence and predictive capacity of climate anomalies on daily to decadal extremes in canopy photosynthesis</title><title>Photosynthesis research</title><addtitle>Photosynth Res</addtitle><addtitle>Photosynth Res</addtitle><description>Significant advances have been made over the past decades in capabilities to simulate diurnal and seasonal variation of leaf-level and canopy-scale photosynthesis in temperate and boreal forests. However, long-term prediction of future forest productivity in a changing climate may be more dependent on how climate and biological anomalies influence extremes in interannual to decadal variability of canopy ecosystem carbon exchanges. These exchanges can differ markedly from leaf level responses, especially owing to the prevalence of long lags in nutrient and water cycling. Until recently, multiple long-term (10+ year) high temporal frequency (daily) observations of canopy exchange were not available to reliably assess this claim. An analysis of one of the longest running North American eddy covariance flux towers reveals that single climate variables do not adequately explain carbon exchange anomalies beyond the seasonal timescale. Daily to weekly lagged anomalies of photosynthesis positively autocorrelate with daily photosynthesis. This effect suggests a negative feedback in photosynthetic response to climate extremes, such as anomalies in evapotranspiration and maximum temperature. Moisture stress in the prior season did inhibit photosynthesis, but mechanisms are difficult to assess. A complex interplay of integrated and lagged productivity and moisture-limiting factors indicate a critical role of seasonal thresholds that limit growing season length and peak productivity. These results lead toward a new conceptual framework for improving earth system models with long-term flux tower observations.</description><subject>Analysis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>boreal forests</subject><subject>canopy</subject><subject>carbon</subject><subject>Carbon - metabolism</subject><subject>Carbon cycle</subject><subject>Carbon cycle (Biogeochemistry)</subject><subject>Climate</subject><subject>Climate science</subject><subject>Ecosystems</subject><subject>eddy covariance</subject><subject>evapotranspiration</subject><subject>growing season</subject><subject>Industrial productivity</subject><subject>leaves</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Models, Biological</subject><subject>Models, Theoretical</subject><subject>North America</subject><subject>Photosynthesis</subject><subject>Photosynthesis - physiology</subject><subject>Phytochemistry</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>prediction</subject><subject>Regular Paper</subject><subject>seasonal variation</subject><subject>Seasons</subject><subject>Spectrum analysis</subject><subject>Temperature</subject><subject>Trees - physiology</subject><subject>Water</subject><subject>Weather</subject><issn>0166-8595</issn><issn>1573-5079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kk1rFTEUhgdR7LX6A9xowI0upuZjkplZluLHhYJg7TpkkjO3KZlkTDLi9Neby1SxLiSBQM7zvpycN1X1kuAzgnH7PhFCKK4xYXXfU17fPap2hLes5rjtH1c7TISoO97zk-pZSrcY404Q9rQ6oQ1uO8bZrnJ7P7oFvAakvEFzBGN1tj8AaTUrbfOKwoi0s5PKRyRMyllIKHhklHUrygEZ0Mooh-BnjjCVovVF7cO8ovkm5JBWn28g2fS8ejIql-DF_XlaXX_88O3ic3355dP-4vyy1pzxXBPdCtrxwTACjeaq51iIoRONaVvDu5FTDo1irVZiUKIQDEYs-nZsqDF0aNlp9XbznWP4vkDKcrJJg3PKQ1iSJE3fE1psaEHf_IPehiX60l2hRC8IZpgV6myjDsqBtH4MOSpdloHJ6uBhtOX-nPEOl93hInj3QFCYXMZzUEtKcn_19SFLNlbHkFKEUc6xjDuukmB5zFluOcuSszzmLO-K5tV928swgfmj-B1sAegGpFLyB4h_ves_rq830aiCVIdok7y-opg0x5_DcEPYL2XLu8A</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Desai, Ankur R</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20140201</creationdate><title>Influence and predictive capacity of climate anomalies on daily to decadal extremes in canopy photosynthesis</title><author>Desai, Ankur R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-1c76285bd31e4c5a95066b864d77d58f525e4a37ca6ba64c53ef0697f42dd2b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>boreal forests</topic><topic>canopy</topic><topic>carbon</topic><topic>Carbon - metabolism</topic><topic>Carbon cycle</topic><topic>Carbon cycle (Biogeochemistry)</topic><topic>Climate</topic><topic>Climate science</topic><topic>Ecosystems</topic><topic>eddy covariance</topic><topic>evapotranspiration</topic><topic>growing season</topic><topic>Industrial productivity</topic><topic>leaves</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Models, Biological</topic><topic>Models, Theoretical</topic><topic>North America</topic><topic>Photosynthesis</topic><topic>Photosynthesis - physiology</topic><topic>Phytochemistry</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>prediction</topic><topic>Regular Paper</topic><topic>seasonal variation</topic><topic>Seasons</topic><topic>Spectrum analysis</topic><topic>Temperature</topic><topic>Trees - physiology</topic><topic>Water</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desai, Ankur R</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Photosynthesis research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desai, Ankur R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence and predictive capacity of climate anomalies on daily to decadal extremes in canopy photosynthesis</atitle><jtitle>Photosynthesis research</jtitle><stitle>Photosynth Res</stitle><addtitle>Photosynth Res</addtitle><date>2014-02-01</date><risdate>2014</risdate><volume>119</volume><issue>1-2</issue><spage>31</spage><epage>47</epage><pages>31-47</pages><issn>0166-8595</issn><eissn>1573-5079</eissn><abstract>Significant advances have been made over the past decades in capabilities to simulate diurnal and seasonal variation of leaf-level and canopy-scale photosynthesis in temperate and boreal forests. However, long-term prediction of future forest productivity in a changing climate may be more dependent on how climate and biological anomalies influence extremes in interannual to decadal variability of canopy ecosystem carbon exchanges. These exchanges can differ markedly from leaf level responses, especially owing to the prevalence of long lags in nutrient and water cycling. Until recently, multiple long-term (10+ year) high temporal frequency (daily) observations of canopy exchange were not available to reliably assess this claim. An analysis of one of the longest running North American eddy covariance flux towers reveals that single climate variables do not adequately explain carbon exchange anomalies beyond the seasonal timescale. Daily to weekly lagged anomalies of photosynthesis positively autocorrelate with daily photosynthesis. This effect suggests a negative feedback in photosynthetic response to climate extremes, such as anomalies in evapotranspiration and maximum temperature. Moisture stress in the prior season did inhibit photosynthesis, but mechanisms are difficult to assess. A complex interplay of integrated and lagged productivity and moisture-limiting factors indicate a critical role of seasonal thresholds that limit growing season length and peak productivity. These results lead toward a new conceptual framework for improving earth system models with long-term flux tower observations.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><pmid>24078353</pmid><doi>10.1007/s11120-013-9925-z</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0166-8595
ispartof Photosynthesis research, 2014-02, Vol.119 (1-2), p.31-47
issn 0166-8595
1573-5079
language eng
recordid cdi_proquest_miscellaneous_1499125252
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Analysis
Biochemistry
Biomedical and Life Sciences
boreal forests
canopy
carbon
Carbon - metabolism
Carbon cycle
Carbon cycle (Biogeochemistry)
Climate
Climate science
Ecosystems
eddy covariance
evapotranspiration
growing season
Industrial productivity
leaves
Life Sciences
Light
Models, Biological
Models, Theoretical
North America
Photosynthesis
Photosynthesis - physiology
Phytochemistry
Plant Genetics and Genomics
Plant Physiology
Plant Sciences
prediction
Regular Paper
seasonal variation
Seasons
Spectrum analysis
Temperature
Trees - physiology
Water
Weather
title Influence and predictive capacity of climate anomalies on daily to decadal extremes in canopy photosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20and%20predictive%20capacity%20of%20climate%20anomalies%20on%20daily%20to%20decadal%20extremes%20in%20canopy%20photosynthesis&rft.jtitle=Photosynthesis%20research&rft.au=Desai,%20Ankur%20R&rft.date=2014-02-01&rft.volume=119&rft.issue=1-2&rft.spage=31&rft.epage=47&rft.pages=31-47&rft.issn=0166-8595&rft.eissn=1573-5079&rft_id=info:doi/10.1007/s11120-013-9925-z&rft_dat=%3Cgale_proqu%3EA358058080%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1469610303&rft_id=info:pmid/24078353&rft_galeid=A358058080&rfr_iscdi=true