Prediction models for Arabica coffee beverage quality based on aroma analyses and chemometrics

In this work, soft modeling based on chemometric analyses of coffee beverage sensory data and the chromatographic profiles of volatile roasted coffee compounds is proposed to predict the scores of acidity, bitterness, flavor, cleanliness, body, and overall quality of the coffee beverage. A partial l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) 2012-11, Vol.101, p.253-260
Hauptverfasser: Ribeiro, J.S., Augusto, F., Salva, T.J.G., Ferreira, M.M.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue
container_start_page 253
container_title Talanta (Oxford)
container_volume 101
creator Ribeiro, J.S.
Augusto, F.
Salva, T.J.G.
Ferreira, M.M.C.
description In this work, soft modeling based on chemometric analyses of coffee beverage sensory data and the chromatographic profiles of volatile roasted coffee compounds is proposed to predict the scores of acidity, bitterness, flavor, cleanliness, body, and overall quality of the coffee beverage. A partial least squares (PLS) regression method was used to construct the models. The ordered predictor selection (OPS) algorithm was applied to select the compounds for the regression model of each sensory attribute in order to take only significant chromatographic peaks into account. The prediction errors of these models, using 4 or 5 latent variables, were equal to 0.28, 0.33, 0.35, 0.33, 0.34 and 0.41, for each of the attributes and compatible with the errors of the mean scores of the experts. Thus, the results proved the feasibility of using a similar methodology in on-line or routine applications to predict the sensory quality of Brazilian Arabica coffee. ► Analyses of coffee volatiles are of great interest for quality control. ► Use of the chromatographic fingerprint of roasted coffees instead of peak areas is a significant innovation. ► Prediction of six sensorial attributes of Brazilian Arabica coffee quality. ► The results demonstrated that SPME-CG coupled with chemometrics is an effective technique for prediction of Arabica coffee quality.
doi_str_mv 10.1016/j.talanta.2012.09.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1496896368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039914012007783</els_id><sourcerecordid>1496896368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-a6318fe8ad496b7fb87ba1f6774a19f92b51725cc397b9f8239a5d6fd7bfbb923</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EosvCTwDlgsQlwR-JP06oqgpFqgQHuGKNnTF4lcStna20_x6vdqHHnjyH533HmoeQt4x2jDL5cdetMMGyQscp4x01HeX8GdkwrUQrBiWekw2lwrSG9fSCvCplRynlgoqX5IILNmjB6Yb8-p5xjH6NaWnmNOJUmpByc5nBRQ-NTyEgNg4fMMNvbO73MMX10DgoODY1AznN0MAC06FgqcPY-D84pxnXHH15TV4EmAq-Ob9b8vPz9Y-rm_b225evV5e3re_VsLYgBdMBNYy9kU4Fp5UDFqRSPTATDHcDU3zwXhjlTNBcGBhGGUblgnOGiy35cOq9y-l-j2W1cywep3ohTPtiWe3VRgqpn0aZ0lJKTY-twwn1OZWSMdi7HGfIB8uoPVqwO3u2YI8WLDW2Wqi5d-cVezfj-D_17-wVeH8GoHiYQobFx_LISdkPqjrckk8nrnrBh4jZFh9x8VVZRr_aMcUnvvIXvC6opQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1178666802</pqid></control><display><type>article</type><title>Prediction models for Arabica coffee beverage quality based on aroma analyses and chemometrics</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ribeiro, J.S. ; Augusto, F. ; Salva, T.J.G. ; Ferreira, M.M.C.</creator><creatorcontrib>Ribeiro, J.S. ; Augusto, F. ; Salva, T.J.G. ; Ferreira, M.M.C.</creatorcontrib><description>In this work, soft modeling based on chemometric analyses of coffee beverage sensory data and the chromatographic profiles of volatile roasted coffee compounds is proposed to predict the scores of acidity, bitterness, flavor, cleanliness, body, and overall quality of the coffee beverage. A partial least squares (PLS) regression method was used to construct the models. The ordered predictor selection (OPS) algorithm was applied to select the compounds for the regression model of each sensory attribute in order to take only significant chromatographic peaks into account. The prediction errors of these models, using 4 or 5 latent variables, were equal to 0.28, 0.33, 0.35, 0.33, 0.34 and 0.41, for each of the attributes and compatible with the errors of the mean scores of the experts. Thus, the results proved the feasibility of using a similar methodology in on-line or routine applications to predict the sensory quality of Brazilian Arabica coffee. ► Analyses of coffee volatiles are of great interest for quality control. ► Use of the chromatographic fingerprint of roasted coffees instead of peak areas is a significant innovation. ► Prediction of six sensorial attributes of Brazilian Arabica coffee quality. ► The results demonstrated that SPME-CG coupled with chemometrics is an effective technique for prediction of Arabica coffee quality.</description><identifier>ISSN: 0039-9140</identifier><identifier>EISSN: 1873-3573</identifier><identifier>DOI: 10.1016/j.talanta.2012.09.022</identifier><identifier>PMID: 23158320</identifier><identifier>CODEN: TLNTA2</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acidity ; Analytical chemistry ; Bitterness ; Chemistry ; Chemometrics ; Chromatography, Gas ; Coffee - standards ; Exact sciences and technology ; Flavor ; Models, Theoretical ; Odorants ; Overall quality ; Sensorial data ; Solid Phase Microextraction ; SPME</subject><ispartof>Talanta (Oxford), 2012-11, Vol.101, p.253-260</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-a6318fe8ad496b7fb87ba1f6774a19f92b51725cc397b9f8239a5d6fd7bfbb923</citedby><cites>FETCH-LOGICAL-c475t-a6318fe8ad496b7fb87ba1f6774a19f92b51725cc397b9f8239a5d6fd7bfbb923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0039914012007783$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26645757$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23158320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ribeiro, J.S.</creatorcontrib><creatorcontrib>Augusto, F.</creatorcontrib><creatorcontrib>Salva, T.J.G.</creatorcontrib><creatorcontrib>Ferreira, M.M.C.</creatorcontrib><title>Prediction models for Arabica coffee beverage quality based on aroma analyses and chemometrics</title><title>Talanta (Oxford)</title><addtitle>Talanta</addtitle><description>In this work, soft modeling based on chemometric analyses of coffee beverage sensory data and the chromatographic profiles of volatile roasted coffee compounds is proposed to predict the scores of acidity, bitterness, flavor, cleanliness, body, and overall quality of the coffee beverage. A partial least squares (PLS) regression method was used to construct the models. The ordered predictor selection (OPS) algorithm was applied to select the compounds for the regression model of each sensory attribute in order to take only significant chromatographic peaks into account. The prediction errors of these models, using 4 or 5 latent variables, were equal to 0.28, 0.33, 0.35, 0.33, 0.34 and 0.41, for each of the attributes and compatible with the errors of the mean scores of the experts. Thus, the results proved the feasibility of using a similar methodology in on-line or routine applications to predict the sensory quality of Brazilian Arabica coffee. ► Analyses of coffee volatiles are of great interest for quality control. ► Use of the chromatographic fingerprint of roasted coffees instead of peak areas is a significant innovation. ► Prediction of six sensorial attributes of Brazilian Arabica coffee quality. ► The results demonstrated that SPME-CG coupled with chemometrics is an effective technique for prediction of Arabica coffee quality.</description><subject>Acidity</subject><subject>Analytical chemistry</subject><subject>Bitterness</subject><subject>Chemistry</subject><subject>Chemometrics</subject><subject>Chromatography, Gas</subject><subject>Coffee - standards</subject><subject>Exact sciences and technology</subject><subject>Flavor</subject><subject>Models, Theoretical</subject><subject>Odorants</subject><subject>Overall quality</subject><subject>Sensorial data</subject><subject>Solid Phase Microextraction</subject><subject>SPME</subject><issn>0039-9140</issn><issn>1873-3573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EosvCTwDlgsQlwR-JP06oqgpFqgQHuGKNnTF4lcStna20_x6vdqHHnjyH533HmoeQt4x2jDL5cdetMMGyQscp4x01HeX8GdkwrUQrBiWekw2lwrSG9fSCvCplRynlgoqX5IILNmjB6Yb8-p5xjH6NaWnmNOJUmpByc5nBRQ-NTyEgNg4fMMNvbO73MMX10DgoODY1AznN0MAC06FgqcPY-D84pxnXHH15TV4EmAq-Ob9b8vPz9Y-rm_b225evV5e3re_VsLYgBdMBNYy9kU4Fp5UDFqRSPTATDHcDU3zwXhjlTNBcGBhGGUblgnOGiy35cOq9y-l-j2W1cywep3ohTPtiWe3VRgqpn0aZ0lJKTY-twwn1OZWSMdi7HGfIB8uoPVqwO3u2YI8WLDW2Wqi5d-cVezfj-D_17-wVeH8GoHiYQobFx_LISdkPqjrckk8nrnrBh4jZFh9x8VVZRr_aMcUnvvIXvC6opQ</recordid><startdate>20121115</startdate><enddate>20121115</enddate><creator>Ribeiro, J.S.</creator><creator>Augusto, F.</creator><creator>Salva, T.J.G.</creator><creator>Ferreira, M.M.C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QR</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20121115</creationdate><title>Prediction models for Arabica coffee beverage quality based on aroma analyses and chemometrics</title><author>Ribeiro, J.S. ; Augusto, F. ; Salva, T.J.G. ; Ferreira, M.M.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-a6318fe8ad496b7fb87ba1f6774a19f92b51725cc397b9f8239a5d6fd7bfbb923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acidity</topic><topic>Analytical chemistry</topic><topic>Bitterness</topic><topic>Chemistry</topic><topic>Chemometrics</topic><topic>Chromatography, Gas</topic><topic>Coffee - standards</topic><topic>Exact sciences and technology</topic><topic>Flavor</topic><topic>Models, Theoretical</topic><topic>Odorants</topic><topic>Overall quality</topic><topic>Sensorial data</topic><topic>Solid Phase Microextraction</topic><topic>SPME</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribeiro, J.S.</creatorcontrib><creatorcontrib>Augusto, F.</creatorcontrib><creatorcontrib>Salva, T.J.G.</creatorcontrib><creatorcontrib>Ferreira, M.M.C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Chemoreception Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Talanta (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribeiro, J.S.</au><au>Augusto, F.</au><au>Salva, T.J.G.</au><au>Ferreira, M.M.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction models for Arabica coffee beverage quality based on aroma analyses and chemometrics</atitle><jtitle>Talanta (Oxford)</jtitle><addtitle>Talanta</addtitle><date>2012-11-15</date><risdate>2012</risdate><volume>101</volume><spage>253</spage><epage>260</epage><pages>253-260</pages><issn>0039-9140</issn><eissn>1873-3573</eissn><coden>TLNTA2</coden><abstract>In this work, soft modeling based on chemometric analyses of coffee beverage sensory data and the chromatographic profiles of volatile roasted coffee compounds is proposed to predict the scores of acidity, bitterness, flavor, cleanliness, body, and overall quality of the coffee beverage. A partial least squares (PLS) regression method was used to construct the models. The ordered predictor selection (OPS) algorithm was applied to select the compounds for the regression model of each sensory attribute in order to take only significant chromatographic peaks into account. The prediction errors of these models, using 4 or 5 latent variables, were equal to 0.28, 0.33, 0.35, 0.33, 0.34 and 0.41, for each of the attributes and compatible with the errors of the mean scores of the experts. Thus, the results proved the feasibility of using a similar methodology in on-line or routine applications to predict the sensory quality of Brazilian Arabica coffee. ► Analyses of coffee volatiles are of great interest for quality control. ► Use of the chromatographic fingerprint of roasted coffees instead of peak areas is a significant innovation. ► Prediction of six sensorial attributes of Brazilian Arabica coffee quality. ► The results demonstrated that SPME-CG coupled with chemometrics is an effective technique for prediction of Arabica coffee quality.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>23158320</pmid><doi>10.1016/j.talanta.2012.09.022</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0039-9140
ispartof Talanta (Oxford), 2012-11, Vol.101, p.253-260
issn 0039-9140
1873-3573
language eng
recordid cdi_proquest_miscellaneous_1496896368
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Acidity
Analytical chemistry
Bitterness
Chemistry
Chemometrics
Chromatography, Gas
Coffee - standards
Exact sciences and technology
Flavor
Models, Theoretical
Odorants
Overall quality
Sensorial data
Solid Phase Microextraction
SPME
title Prediction models for Arabica coffee beverage quality based on aroma analyses and chemometrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20models%20for%20Arabica%20coffee%20beverage%20quality%20based%20on%20aroma%20analyses%20and%20chemometrics&rft.jtitle=Talanta%20(Oxford)&rft.au=Ribeiro,%20J.S.&rft.date=2012-11-15&rft.volume=101&rft.spage=253&rft.epage=260&rft.pages=253-260&rft.issn=0039-9140&rft.eissn=1873-3573&rft.coden=TLNTA2&rft_id=info:doi/10.1016/j.talanta.2012.09.022&rft_dat=%3Cproquest_cross%3E1496896368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1178666802&rft_id=info:pmid/23158320&rft_els_id=S0039914012007783&rfr_iscdi=true