Radiative and energetic constraints on the global annual mean atomic oxygen concentration in the mesopause region
We present a new approach to constrain and validate atomic oxygen (O) concentrations in the mesopause region (~ 80 to ~ 100 km). In a prior companion paper [Mlynczak et al., ], we presented O‐atom concentrations in the mesopause region inferred from measurements of day ozone and night hydroxyl emiss...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Atmospheres 2013-06, Vol.118 (11), p.5796-5802 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5802 |
---|---|
container_issue | 11 |
container_start_page | 5796 |
container_title | Journal of geophysical research. Atmospheres |
container_volume | 118 |
creator | Mlynczak, Martin G. Hunt, Linda H. Mertens, Christopher J. Marshall, B. Thomas Russell III, James M. López Puertas, Manuel Smith, Anne K. Siskind, David E. Mast, Jeffrey C. Thompson, R. Earl Gordley, Larry L. |
description | We present a new approach to constrain and validate atomic oxygen (O) concentrations in the mesopause region (~ 80 to ~ 100 km). In a prior companion paper [Mlynczak et al., ], we presented O‐atom concentrations in the mesopause region inferred from measurements of day ozone and night hydroxyl emission rates made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument. The approach presented here uses the constraint of global, annual mean energy balance to derive atomic oxygen concentrations, consistent with rates of radiative cooling by carbon dioxide (CO2) and solar heating due to molecular oxygen (O2). The mathematical difference between these cooling and heating rates, on a global annual mean basis, effectively constrains the maximum heating rate for the sum of all other processes. The remaining terms, solar heating due to ozone plus a series of exothermic chemical reactions can be expressed as functions of O. This new approach enables a simple mathematical expression that yields the vertical profile of global annual mean “radiatively constrained” atomic oxygen in the mesopause region. The radiatively constrained atomic oxygen depends only on the CO2 cooling rates, O2 solar heating rates, and standard reaction rate coefficients and enthalpies. Radiative cooling and solar heating rates used in these analyses are derived from measurements made by the SABER instrument on the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite. There is excellent agreement between the SABER radiatively constrained atomic oxygen and that derived from the SABER ozone and OH emission measurements over most of the mesopause region. Radiatively constrained atomic oxygen represents an upper limit on the global average O‐atom concentration in the mesopause region.
Key Points
Net radiation constrains mesopause atomic oxygen
New approach to deriving chemical composition
Results allow independent validation of mesopause chemsitry |
doi_str_mv | 10.1002/jgrd.50400 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1496896135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1496896135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4660-fc3c6e699ee198adb754d5b6b8dc03874eb447beaad1a655250badeb6c6ab9d33</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhgexYKm98RcMiCDC1GTzNbmUWrdfKJSK3oUzmbNj1plkm8xo998367R74UVzc0J4nvcE3qJ4Q8kJJWTxcd3F9kQQTsiL4nBBpa5qreXL_V39fFUcp7Qm-dSEccEPi7sbaB2M7g-W4NsSPcYOR2dLG3waIzg_pjL4cvyFZdeHBvrM-SmPAcGXMIYhw-F-26HfORZ9tkaXFTdbA6awgSlhGbHL76-LgxX0CY8f51Hx_cvZ7el5df1teXH66bqyXEpSrSyzEqXWiFTX0DZK8FY0sqlbS1itODacqwYBWgpSiIUgDbTYSCuh0S1jR8X7OXcTw92EaTSDSxb7HjyGKRnKtay1pExk9O1_6DpM0effmbyb10wKTZ6lJKsZE3PWh5myMaQUcWU20Q0Qt4YSs6vJ7Goy_2rK8LvHSEgW-lUEb13aGwslFSVKZY7O3F_X4_aZRHO5vPn8lF3Njksj3u8diL-NVEwJ8-Pr0tyeM7UUSpkr9gBk97Hb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638335135</pqid></control><display><type>article</type><title>Radiative and energetic constraints on the global annual mean atomic oxygen concentration in the mesopause region</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Mlynczak, Martin G. ; Hunt, Linda H. ; Mertens, Christopher J. ; Marshall, B. Thomas ; Russell III, James M. ; López Puertas, Manuel ; Smith, Anne K. ; Siskind, David E. ; Mast, Jeffrey C. ; Thompson, R. Earl ; Gordley, Larry L.</creator><creatorcontrib>Mlynczak, Martin G. ; Hunt, Linda H. ; Mertens, Christopher J. ; Marshall, B. Thomas ; Russell III, James M. ; López Puertas, Manuel ; Smith, Anne K. ; Siskind, David E. ; Mast, Jeffrey C. ; Thompson, R. Earl ; Gordley, Larry L.</creatorcontrib><description>We present a new approach to constrain and validate atomic oxygen (O) concentrations in the mesopause region (~ 80 to ~ 100 km). In a prior companion paper [Mlynczak et al., ], we presented O‐atom concentrations in the mesopause region inferred from measurements of day ozone and night hydroxyl emission rates made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument. The approach presented here uses the constraint of global, annual mean energy balance to derive atomic oxygen concentrations, consistent with rates of radiative cooling by carbon dioxide (CO2) and solar heating due to molecular oxygen (O2). The mathematical difference between these cooling and heating rates, on a global annual mean basis, effectively constrains the maximum heating rate for the sum of all other processes. The remaining terms, solar heating due to ozone plus a series of exothermic chemical reactions can be expressed as functions of O. This new approach enables a simple mathematical expression that yields the vertical profile of global annual mean “radiatively constrained” atomic oxygen in the mesopause region. The radiatively constrained atomic oxygen depends only on the CO2 cooling rates, O2 solar heating rates, and standard reaction rate coefficients and enthalpies. Radiative cooling and solar heating rates used in these analyses are derived from measurements made by the SABER instrument on the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite. There is excellent agreement between the SABER radiatively constrained atomic oxygen and that derived from the SABER ozone and OH emission measurements over most of the mesopause region. Radiatively constrained atomic oxygen represents an upper limit on the global average O‐atom concentration in the mesopause region.
Key Points
Net radiation constrains mesopause atomic oxygen
New approach to deriving chemical composition
Results allow independent validation of mesopause chemsitry</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/jgrd.50400</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>airglow ; Annual ; Atom concentration ; Atomic oxygen ; Broadband ; Carbon dioxide ; Chemical composition ; Chemical reactions ; Coefficients ; Constraints ; Cooling ; Cooling rate ; Dynamics ; Earth, ocean, space ; Emission ; Emission measurements ; Energy balance ; Enthalpy ; Exact sciences and technology ; Exothermic reactions ; External geophysics ; Functions (mathematics) ; Geophysics ; Heating ; Heating rate ; Hydroxyl emission ; Ionosphere ; Mathematical analysis ; Mesopause ; Mesosphere ; Meteorology ; Net radiation ; Nuclear electric power generation ; Oxygen ; Ozone ; Radiation ; Radiation balance ; radiative constraints ; Radiative cooling ; Radiometry ; Satellites ; Solar heating ; Thermosphere ; Vertical profiles</subject><ispartof>Journal of geophysical research. Atmospheres, 2013-06, Vol.118 (11), p.5796-5802</ispartof><rights>2013. The Authors.</rights><rights>2014 INIST-CNRS</rights><rights>2013. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4660-fc3c6e699ee198adb754d5b6b8dc03874eb447beaad1a655250badeb6c6ab9d33</citedby><cites>FETCH-LOGICAL-c4660-fc3c6e699ee198adb754d5b6b8dc03874eb447beaad1a655250badeb6c6ab9d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgrd.50400$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgrd.50400$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27671077$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mlynczak, Martin G.</creatorcontrib><creatorcontrib>Hunt, Linda H.</creatorcontrib><creatorcontrib>Mertens, Christopher J.</creatorcontrib><creatorcontrib>Marshall, B. Thomas</creatorcontrib><creatorcontrib>Russell III, James M.</creatorcontrib><creatorcontrib>López Puertas, Manuel</creatorcontrib><creatorcontrib>Smith, Anne K.</creatorcontrib><creatorcontrib>Siskind, David E.</creatorcontrib><creatorcontrib>Mast, Jeffrey C.</creatorcontrib><creatorcontrib>Thompson, R. Earl</creatorcontrib><creatorcontrib>Gordley, Larry L.</creatorcontrib><title>Radiative and energetic constraints on the global annual mean atomic oxygen concentration in the mesopause region</title><title>Journal of geophysical research. Atmospheres</title><addtitle>J. Geophys. Res. Atmos</addtitle><description>We present a new approach to constrain and validate atomic oxygen (O) concentrations in the mesopause region (~ 80 to ~ 100 km). In a prior companion paper [Mlynczak et al., ], we presented O‐atom concentrations in the mesopause region inferred from measurements of day ozone and night hydroxyl emission rates made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument. The approach presented here uses the constraint of global, annual mean energy balance to derive atomic oxygen concentrations, consistent with rates of radiative cooling by carbon dioxide (CO2) and solar heating due to molecular oxygen (O2). The mathematical difference between these cooling and heating rates, on a global annual mean basis, effectively constrains the maximum heating rate for the sum of all other processes. The remaining terms, solar heating due to ozone plus a series of exothermic chemical reactions can be expressed as functions of O. This new approach enables a simple mathematical expression that yields the vertical profile of global annual mean “radiatively constrained” atomic oxygen in the mesopause region. The radiatively constrained atomic oxygen depends only on the CO2 cooling rates, O2 solar heating rates, and standard reaction rate coefficients and enthalpies. Radiative cooling and solar heating rates used in these analyses are derived from measurements made by the SABER instrument on the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite. There is excellent agreement between the SABER radiatively constrained atomic oxygen and that derived from the SABER ozone and OH emission measurements over most of the mesopause region. Radiatively constrained atomic oxygen represents an upper limit on the global average O‐atom concentration in the mesopause region.
Key Points
Net radiation constrains mesopause atomic oxygen
New approach to deriving chemical composition
Results allow independent validation of mesopause chemsitry</description><subject>airglow</subject><subject>Annual</subject><subject>Atom concentration</subject><subject>Atomic oxygen</subject><subject>Broadband</subject><subject>Carbon dioxide</subject><subject>Chemical composition</subject><subject>Chemical reactions</subject><subject>Coefficients</subject><subject>Constraints</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Dynamics</subject><subject>Earth, ocean, space</subject><subject>Emission</subject><subject>Emission measurements</subject><subject>Energy balance</subject><subject>Enthalpy</subject><subject>Exact sciences and technology</subject><subject>Exothermic reactions</subject><subject>External geophysics</subject><subject>Functions (mathematics)</subject><subject>Geophysics</subject><subject>Heating</subject><subject>Heating rate</subject><subject>Hydroxyl emission</subject><subject>Ionosphere</subject><subject>Mathematical analysis</subject><subject>Mesopause</subject><subject>Mesosphere</subject><subject>Meteorology</subject><subject>Net radiation</subject><subject>Nuclear electric power generation</subject><subject>Oxygen</subject><subject>Ozone</subject><subject>Radiation</subject><subject>Radiation balance</subject><subject>radiative constraints</subject><subject>Radiative cooling</subject><subject>Radiometry</subject><subject>Satellites</subject><subject>Solar heating</subject><subject>Thermosphere</subject><subject>Vertical profiles</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kV1rFDEUhgexYKm98RcMiCDC1GTzNbmUWrdfKJSK3oUzmbNj1plkm8xo998367R74UVzc0J4nvcE3qJ4Q8kJJWTxcd3F9kQQTsiL4nBBpa5qreXL_V39fFUcp7Qm-dSEccEPi7sbaB2M7g-W4NsSPcYOR2dLG3waIzg_pjL4cvyFZdeHBvrM-SmPAcGXMIYhw-F-26HfORZ9tkaXFTdbA6awgSlhGbHL76-LgxX0CY8f51Hx_cvZ7el5df1teXH66bqyXEpSrSyzEqXWiFTX0DZK8FY0sqlbS1itODacqwYBWgpSiIUgDbTYSCuh0S1jR8X7OXcTw92EaTSDSxb7HjyGKRnKtay1pExk9O1_6DpM0effmbyb10wKTZ6lJKsZE3PWh5myMaQUcWU20Q0Qt4YSs6vJ7Goy_2rK8LvHSEgW-lUEb13aGwslFSVKZY7O3F_X4_aZRHO5vPn8lF3Njksj3u8diL-NVEwJ8-Pr0tyeM7UUSpkr9gBk97Hb</recordid><startdate>20130616</startdate><enddate>20130616</enddate><creator>Mlynczak, Martin G.</creator><creator>Hunt, Linda H.</creator><creator>Mertens, Christopher J.</creator><creator>Marshall, B. Thomas</creator><creator>Russell III, James M.</creator><creator>López Puertas, Manuel</creator><creator>Smith, Anne K.</creator><creator>Siskind, David E.</creator><creator>Mast, Jeffrey C.</creator><creator>Thompson, R. Earl</creator><creator>Gordley, Larry L.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons</general><scope>BSCLL</scope><scope>24P</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SU</scope></search><sort><creationdate>20130616</creationdate><title>Radiative and energetic constraints on the global annual mean atomic oxygen concentration in the mesopause region</title><author>Mlynczak, Martin G. ; Hunt, Linda H. ; Mertens, Christopher J. ; Marshall, B. Thomas ; Russell III, James M. ; López Puertas, Manuel ; Smith, Anne K. ; Siskind, David E. ; Mast, Jeffrey C. ; Thompson, R. Earl ; Gordley, Larry L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4660-fc3c6e699ee198adb754d5b6b8dc03874eb447beaad1a655250badeb6c6ab9d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>airglow</topic><topic>Annual</topic><topic>Atom concentration</topic><topic>Atomic oxygen</topic><topic>Broadband</topic><topic>Carbon dioxide</topic><topic>Chemical composition</topic><topic>Chemical reactions</topic><topic>Coefficients</topic><topic>Constraints</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Dynamics</topic><topic>Earth, ocean, space</topic><topic>Emission</topic><topic>Emission measurements</topic><topic>Energy balance</topic><topic>Enthalpy</topic><topic>Exact sciences and technology</topic><topic>Exothermic reactions</topic><topic>External geophysics</topic><topic>Functions (mathematics)</topic><topic>Geophysics</topic><topic>Heating</topic><topic>Heating rate</topic><topic>Hydroxyl emission</topic><topic>Ionosphere</topic><topic>Mathematical analysis</topic><topic>Mesopause</topic><topic>Mesosphere</topic><topic>Meteorology</topic><topic>Net radiation</topic><topic>Nuclear electric power generation</topic><topic>Oxygen</topic><topic>Ozone</topic><topic>Radiation</topic><topic>Radiation balance</topic><topic>radiative constraints</topic><topic>Radiative cooling</topic><topic>Radiometry</topic><topic>Satellites</topic><topic>Solar heating</topic><topic>Thermosphere</topic><topic>Vertical profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mlynczak, Martin G.</creatorcontrib><creatorcontrib>Hunt, Linda H.</creatorcontrib><creatorcontrib>Mertens, Christopher J.</creatorcontrib><creatorcontrib>Marshall, B. Thomas</creatorcontrib><creatorcontrib>Russell III, James M.</creatorcontrib><creatorcontrib>López Puertas, Manuel</creatorcontrib><creatorcontrib>Smith, Anne K.</creatorcontrib><creatorcontrib>Siskind, David E.</creatorcontrib><creatorcontrib>Mast, Jeffrey C.</creatorcontrib><creatorcontrib>Thompson, R. Earl</creatorcontrib><creatorcontrib>Gordley, Larry L.</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environmental Engineering Abstracts</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mlynczak, Martin G.</au><au>Hunt, Linda H.</au><au>Mertens, Christopher J.</au><au>Marshall, B. Thomas</au><au>Russell III, James M.</au><au>López Puertas, Manuel</au><au>Smith, Anne K.</au><au>Siskind, David E.</au><au>Mast, Jeffrey C.</au><au>Thompson, R. Earl</au><au>Gordley, Larry L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiative and energetic constraints on the global annual mean atomic oxygen concentration in the mesopause region</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><addtitle>J. Geophys. Res. Atmos</addtitle><date>2013-06-16</date><risdate>2013</risdate><volume>118</volume><issue>11</issue><spage>5796</spage><epage>5802</epage><pages>5796-5802</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>We present a new approach to constrain and validate atomic oxygen (O) concentrations in the mesopause region (~ 80 to ~ 100 km). In a prior companion paper [Mlynczak et al., ], we presented O‐atom concentrations in the mesopause region inferred from measurements of day ozone and night hydroxyl emission rates made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument. The approach presented here uses the constraint of global, annual mean energy balance to derive atomic oxygen concentrations, consistent with rates of radiative cooling by carbon dioxide (CO2) and solar heating due to molecular oxygen (O2). The mathematical difference between these cooling and heating rates, on a global annual mean basis, effectively constrains the maximum heating rate for the sum of all other processes. The remaining terms, solar heating due to ozone plus a series of exothermic chemical reactions can be expressed as functions of O. This new approach enables a simple mathematical expression that yields the vertical profile of global annual mean “radiatively constrained” atomic oxygen in the mesopause region. The radiatively constrained atomic oxygen depends only on the CO2 cooling rates, O2 solar heating rates, and standard reaction rate coefficients and enthalpies. Radiative cooling and solar heating rates used in these analyses are derived from measurements made by the SABER instrument on the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite. There is excellent agreement between the SABER radiatively constrained atomic oxygen and that derived from the SABER ozone and OH emission measurements over most of the mesopause region. Radiatively constrained atomic oxygen represents an upper limit on the global average O‐atom concentration in the mesopause region.
Key Points
Net radiation constrains mesopause atomic oxygen
New approach to deriving chemical composition
Results allow independent validation of mesopause chemsitry</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jgrd.50400</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of geophysical research. Atmospheres, 2013-06, Vol.118 (11), p.5796-5802 |
issn | 2169-897X 2169-8996 |
language | eng |
recordid | cdi_proquest_miscellaneous_1496896135 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | airglow Annual Atom concentration Atomic oxygen Broadband Carbon dioxide Chemical composition Chemical reactions Coefficients Constraints Cooling Cooling rate Dynamics Earth, ocean, space Emission Emission measurements Energy balance Enthalpy Exact sciences and technology Exothermic reactions External geophysics Functions (mathematics) Geophysics Heating Heating rate Hydroxyl emission Ionosphere Mathematical analysis Mesopause Mesosphere Meteorology Net radiation Nuclear electric power generation Oxygen Ozone Radiation Radiation balance radiative constraints Radiative cooling Radiometry Satellites Solar heating Thermosphere Vertical profiles |
title | Radiative and energetic constraints on the global annual mean atomic oxygen concentration in the mesopause region |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T19%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiative%20and%20energetic%20constraints%20on%20the%20global%20annual%20mean%20atomic%20oxygen%20concentration%20in%20the%20mesopause%20region&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Mlynczak,%20Martin%20G.&rft.date=2013-06-16&rft.volume=118&rft.issue=11&rft.spage=5796&rft.epage=5802&rft.pages=5796-5802&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/jgrd.50400&rft_dat=%3Cproquest_cross%3E1496896135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1638335135&rft_id=info:pmid/&rfr_iscdi=true |