Radiative and energetic constraints on the global annual mean atomic oxygen concentration in the mesopause region

We present a new approach to constrain and validate atomic oxygen (O) concentrations in the mesopause region (~ 80 to ~ 100 km). In a prior companion paper [Mlynczak et al., ], we presented O‐atom concentrations in the mesopause region inferred from measurements of day ozone and night hydroxyl emiss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2013-06, Vol.118 (11), p.5796-5802
Hauptverfasser: Mlynczak, Martin G., Hunt, Linda H., Mertens, Christopher J., Marshall, B. Thomas, Russell III, James M., López Puertas, Manuel, Smith, Anne K., Siskind, David E., Mast, Jeffrey C., Thompson, R. Earl, Gordley, Larry L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5802
container_issue 11
container_start_page 5796
container_title Journal of geophysical research. Atmospheres
container_volume 118
creator Mlynczak, Martin G.
Hunt, Linda H.
Mertens, Christopher J.
Marshall, B. Thomas
Russell III, James M.
López Puertas, Manuel
Smith, Anne K.
Siskind, David E.
Mast, Jeffrey C.
Thompson, R. Earl
Gordley, Larry L.
description We present a new approach to constrain and validate atomic oxygen (O) concentrations in the mesopause region (~ 80 to ~ 100 km). In a prior companion paper [Mlynczak et al., ], we presented O‐atom concentrations in the mesopause region inferred from measurements of day ozone and night hydroxyl emission rates made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument. The approach presented here uses the constraint of global, annual mean energy balance to derive atomic oxygen concentrations, consistent with rates of radiative cooling by carbon dioxide (CO2) and solar heating due to molecular oxygen (O2). The mathematical difference between these cooling and heating rates, on a global annual mean basis, effectively constrains the maximum heating rate for the sum of all other processes. The remaining terms, solar heating due to ozone plus a series of exothermic chemical reactions can be expressed as functions of O. This new approach enables a simple mathematical expression that yields the vertical profile of global annual mean “radiatively constrained” atomic oxygen in the mesopause region. The radiatively constrained atomic oxygen depends only on the CO2 cooling rates, O2 solar heating rates, and standard reaction rate coefficients and enthalpies. Radiative cooling and solar heating rates used in these analyses are derived from measurements made by the SABER instrument on the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite. There is excellent agreement between the SABER radiatively constrained atomic oxygen and that derived from the SABER ozone and OH emission measurements over most of the mesopause region. Radiatively constrained atomic oxygen represents an upper limit on the global average O‐atom concentration in the mesopause region. Key Points Net radiation constrains mesopause atomic oxygen New approach to deriving chemical composition Results allow independent validation of mesopause chemsitry
doi_str_mv 10.1002/jgrd.50400
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1496896135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1496896135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4660-fc3c6e699ee198adb754d5b6b8dc03874eb447beaad1a655250badeb6c6ab9d33</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhgexYKm98RcMiCDC1GTzNbmUWrdfKJSK3oUzmbNj1plkm8xo998367R74UVzc0J4nvcE3qJ4Q8kJJWTxcd3F9kQQTsiL4nBBpa5qreXL_V39fFUcp7Qm-dSEccEPi7sbaB2M7g-W4NsSPcYOR2dLG3waIzg_pjL4cvyFZdeHBvrM-SmPAcGXMIYhw-F-26HfORZ9tkaXFTdbA6awgSlhGbHL76-LgxX0CY8f51Hx_cvZ7el5df1teXH66bqyXEpSrSyzEqXWiFTX0DZK8FY0sqlbS1itODacqwYBWgpSiIUgDbTYSCuh0S1jR8X7OXcTw92EaTSDSxb7HjyGKRnKtay1pExk9O1_6DpM0effmbyb10wKTZ6lJKsZE3PWh5myMaQUcWU20Q0Qt4YSs6vJ7Goy_2rK8LvHSEgW-lUEb13aGwslFSVKZY7O3F_X4_aZRHO5vPn8lF3Njksj3u8diL-NVEwJ8-Pr0tyeM7UUSpkr9gBk97Hb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638335135</pqid></control><display><type>article</type><title>Radiative and energetic constraints on the global annual mean atomic oxygen concentration in the mesopause region</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Mlynczak, Martin G. ; Hunt, Linda H. ; Mertens, Christopher J. ; Marshall, B. Thomas ; Russell III, James M. ; López Puertas, Manuel ; Smith, Anne K. ; Siskind, David E. ; Mast, Jeffrey C. ; Thompson, R. Earl ; Gordley, Larry L.</creator><creatorcontrib>Mlynczak, Martin G. ; Hunt, Linda H. ; Mertens, Christopher J. ; Marshall, B. Thomas ; Russell III, James M. ; López Puertas, Manuel ; Smith, Anne K. ; Siskind, David E. ; Mast, Jeffrey C. ; Thompson, R. Earl ; Gordley, Larry L.</creatorcontrib><description>We present a new approach to constrain and validate atomic oxygen (O) concentrations in the mesopause region (~ 80 to ~ 100 km). In a prior companion paper [Mlynczak et al., ], we presented O‐atom concentrations in the mesopause region inferred from measurements of day ozone and night hydroxyl emission rates made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument. The approach presented here uses the constraint of global, annual mean energy balance to derive atomic oxygen concentrations, consistent with rates of radiative cooling by carbon dioxide (CO2) and solar heating due to molecular oxygen (O2). The mathematical difference between these cooling and heating rates, on a global annual mean basis, effectively constrains the maximum heating rate for the sum of all other processes. The remaining terms, solar heating due to ozone plus a series of exothermic chemical reactions can be expressed as functions of O. This new approach enables a simple mathematical expression that yields the vertical profile of global annual mean “radiatively constrained” atomic oxygen in the mesopause region. The radiatively constrained atomic oxygen depends only on the CO2 cooling rates, O2 solar heating rates, and standard reaction rate coefficients and enthalpies. Radiative cooling and solar heating rates used in these analyses are derived from measurements made by the SABER instrument on the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite. There is excellent agreement between the SABER radiatively constrained atomic oxygen and that derived from the SABER ozone and OH emission measurements over most of the mesopause region. Radiatively constrained atomic oxygen represents an upper limit on the global average O‐atom concentration in the mesopause region. Key Points Net radiation constrains mesopause atomic oxygen New approach to deriving chemical composition Results allow independent validation of mesopause chemsitry</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/jgrd.50400</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>airglow ; Annual ; Atom concentration ; Atomic oxygen ; Broadband ; Carbon dioxide ; Chemical composition ; Chemical reactions ; Coefficients ; Constraints ; Cooling ; Cooling rate ; Dynamics ; Earth, ocean, space ; Emission ; Emission measurements ; Energy balance ; Enthalpy ; Exact sciences and technology ; Exothermic reactions ; External geophysics ; Functions (mathematics) ; Geophysics ; Heating ; Heating rate ; Hydroxyl emission ; Ionosphere ; Mathematical analysis ; Mesopause ; Mesosphere ; Meteorology ; Net radiation ; Nuclear electric power generation ; Oxygen ; Ozone ; Radiation ; Radiation balance ; radiative constraints ; Radiative cooling ; Radiometry ; Satellites ; Solar heating ; Thermosphere ; Vertical profiles</subject><ispartof>Journal of geophysical research. Atmospheres, 2013-06, Vol.118 (11), p.5796-5802</ispartof><rights>2013. The Authors.</rights><rights>2014 INIST-CNRS</rights><rights>2013. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4660-fc3c6e699ee198adb754d5b6b8dc03874eb447beaad1a655250badeb6c6ab9d33</citedby><cites>FETCH-LOGICAL-c4660-fc3c6e699ee198adb754d5b6b8dc03874eb447beaad1a655250badeb6c6ab9d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgrd.50400$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgrd.50400$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27671077$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mlynczak, Martin G.</creatorcontrib><creatorcontrib>Hunt, Linda H.</creatorcontrib><creatorcontrib>Mertens, Christopher J.</creatorcontrib><creatorcontrib>Marshall, B. Thomas</creatorcontrib><creatorcontrib>Russell III, James M.</creatorcontrib><creatorcontrib>López Puertas, Manuel</creatorcontrib><creatorcontrib>Smith, Anne K.</creatorcontrib><creatorcontrib>Siskind, David E.</creatorcontrib><creatorcontrib>Mast, Jeffrey C.</creatorcontrib><creatorcontrib>Thompson, R. Earl</creatorcontrib><creatorcontrib>Gordley, Larry L.</creatorcontrib><title>Radiative and energetic constraints on the global annual mean atomic oxygen concentration in the mesopause region</title><title>Journal of geophysical research. Atmospheres</title><addtitle>J. Geophys. Res. Atmos</addtitle><description>We present a new approach to constrain and validate atomic oxygen (O) concentrations in the mesopause region (~ 80 to ~ 100 km). In a prior companion paper [Mlynczak et al., ], we presented O‐atom concentrations in the mesopause region inferred from measurements of day ozone and night hydroxyl emission rates made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument. The approach presented here uses the constraint of global, annual mean energy balance to derive atomic oxygen concentrations, consistent with rates of radiative cooling by carbon dioxide (CO2) and solar heating due to molecular oxygen (O2). The mathematical difference between these cooling and heating rates, on a global annual mean basis, effectively constrains the maximum heating rate for the sum of all other processes. The remaining terms, solar heating due to ozone plus a series of exothermic chemical reactions can be expressed as functions of O. This new approach enables a simple mathematical expression that yields the vertical profile of global annual mean “radiatively constrained” atomic oxygen in the mesopause region. The radiatively constrained atomic oxygen depends only on the CO2 cooling rates, O2 solar heating rates, and standard reaction rate coefficients and enthalpies. Radiative cooling and solar heating rates used in these analyses are derived from measurements made by the SABER instrument on the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite. There is excellent agreement between the SABER radiatively constrained atomic oxygen and that derived from the SABER ozone and OH emission measurements over most of the mesopause region. Radiatively constrained atomic oxygen represents an upper limit on the global average O‐atom concentration in the mesopause region. Key Points Net radiation constrains mesopause atomic oxygen New approach to deriving chemical composition Results allow independent validation of mesopause chemsitry</description><subject>airglow</subject><subject>Annual</subject><subject>Atom concentration</subject><subject>Atomic oxygen</subject><subject>Broadband</subject><subject>Carbon dioxide</subject><subject>Chemical composition</subject><subject>Chemical reactions</subject><subject>Coefficients</subject><subject>Constraints</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Dynamics</subject><subject>Earth, ocean, space</subject><subject>Emission</subject><subject>Emission measurements</subject><subject>Energy balance</subject><subject>Enthalpy</subject><subject>Exact sciences and technology</subject><subject>Exothermic reactions</subject><subject>External geophysics</subject><subject>Functions (mathematics)</subject><subject>Geophysics</subject><subject>Heating</subject><subject>Heating rate</subject><subject>Hydroxyl emission</subject><subject>Ionosphere</subject><subject>Mathematical analysis</subject><subject>Mesopause</subject><subject>Mesosphere</subject><subject>Meteorology</subject><subject>Net radiation</subject><subject>Nuclear electric power generation</subject><subject>Oxygen</subject><subject>Ozone</subject><subject>Radiation</subject><subject>Radiation balance</subject><subject>radiative constraints</subject><subject>Radiative cooling</subject><subject>Radiometry</subject><subject>Satellites</subject><subject>Solar heating</subject><subject>Thermosphere</subject><subject>Vertical profiles</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kV1rFDEUhgexYKm98RcMiCDC1GTzNbmUWrdfKJSK3oUzmbNj1plkm8xo998367R74UVzc0J4nvcE3qJ4Q8kJJWTxcd3F9kQQTsiL4nBBpa5qreXL_V39fFUcp7Qm-dSEccEPi7sbaB2M7g-W4NsSPcYOR2dLG3waIzg_pjL4cvyFZdeHBvrM-SmPAcGXMIYhw-F-26HfORZ9tkaXFTdbA6awgSlhGbHL76-LgxX0CY8f51Hx_cvZ7el5df1teXH66bqyXEpSrSyzEqXWiFTX0DZK8FY0sqlbS1itODacqwYBWgpSiIUgDbTYSCuh0S1jR8X7OXcTw92EaTSDSxb7HjyGKRnKtay1pExk9O1_6DpM0effmbyb10wKTZ6lJKsZE3PWh5myMaQUcWU20Q0Qt4YSs6vJ7Goy_2rK8LvHSEgW-lUEb13aGwslFSVKZY7O3F_X4_aZRHO5vPn8lF3Njksj3u8diL-NVEwJ8-Pr0tyeM7UUSpkr9gBk97Hb</recordid><startdate>20130616</startdate><enddate>20130616</enddate><creator>Mlynczak, Martin G.</creator><creator>Hunt, Linda H.</creator><creator>Mertens, Christopher J.</creator><creator>Marshall, B. Thomas</creator><creator>Russell III, James M.</creator><creator>López Puertas, Manuel</creator><creator>Smith, Anne K.</creator><creator>Siskind, David E.</creator><creator>Mast, Jeffrey C.</creator><creator>Thompson, R. Earl</creator><creator>Gordley, Larry L.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons</general><scope>BSCLL</scope><scope>24P</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SU</scope></search><sort><creationdate>20130616</creationdate><title>Radiative and energetic constraints on the global annual mean atomic oxygen concentration in the mesopause region</title><author>Mlynczak, Martin G. ; Hunt, Linda H. ; Mertens, Christopher J. ; Marshall, B. Thomas ; Russell III, James M. ; López Puertas, Manuel ; Smith, Anne K. ; Siskind, David E. ; Mast, Jeffrey C. ; Thompson, R. Earl ; Gordley, Larry L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4660-fc3c6e699ee198adb754d5b6b8dc03874eb447beaad1a655250badeb6c6ab9d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>airglow</topic><topic>Annual</topic><topic>Atom concentration</topic><topic>Atomic oxygen</topic><topic>Broadband</topic><topic>Carbon dioxide</topic><topic>Chemical composition</topic><topic>Chemical reactions</topic><topic>Coefficients</topic><topic>Constraints</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Dynamics</topic><topic>Earth, ocean, space</topic><topic>Emission</topic><topic>Emission measurements</topic><topic>Energy balance</topic><topic>Enthalpy</topic><topic>Exact sciences and technology</topic><topic>Exothermic reactions</topic><topic>External geophysics</topic><topic>Functions (mathematics)</topic><topic>Geophysics</topic><topic>Heating</topic><topic>Heating rate</topic><topic>Hydroxyl emission</topic><topic>Ionosphere</topic><topic>Mathematical analysis</topic><topic>Mesopause</topic><topic>Mesosphere</topic><topic>Meteorology</topic><topic>Net radiation</topic><topic>Nuclear electric power generation</topic><topic>Oxygen</topic><topic>Ozone</topic><topic>Radiation</topic><topic>Radiation balance</topic><topic>radiative constraints</topic><topic>Radiative cooling</topic><topic>Radiometry</topic><topic>Satellites</topic><topic>Solar heating</topic><topic>Thermosphere</topic><topic>Vertical profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mlynczak, Martin G.</creatorcontrib><creatorcontrib>Hunt, Linda H.</creatorcontrib><creatorcontrib>Mertens, Christopher J.</creatorcontrib><creatorcontrib>Marshall, B. Thomas</creatorcontrib><creatorcontrib>Russell III, James M.</creatorcontrib><creatorcontrib>López Puertas, Manuel</creatorcontrib><creatorcontrib>Smith, Anne K.</creatorcontrib><creatorcontrib>Siskind, David E.</creatorcontrib><creatorcontrib>Mast, Jeffrey C.</creatorcontrib><creatorcontrib>Thompson, R. Earl</creatorcontrib><creatorcontrib>Gordley, Larry L.</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environmental Engineering Abstracts</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mlynczak, Martin G.</au><au>Hunt, Linda H.</au><au>Mertens, Christopher J.</au><au>Marshall, B. Thomas</au><au>Russell III, James M.</au><au>López Puertas, Manuel</au><au>Smith, Anne K.</au><au>Siskind, David E.</au><au>Mast, Jeffrey C.</au><au>Thompson, R. Earl</au><au>Gordley, Larry L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiative and energetic constraints on the global annual mean atomic oxygen concentration in the mesopause region</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><addtitle>J. Geophys. Res. Atmos</addtitle><date>2013-06-16</date><risdate>2013</risdate><volume>118</volume><issue>11</issue><spage>5796</spage><epage>5802</epage><pages>5796-5802</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>We present a new approach to constrain and validate atomic oxygen (O) concentrations in the mesopause region (~ 80 to ~ 100 km). In a prior companion paper [Mlynczak et al., ], we presented O‐atom concentrations in the mesopause region inferred from measurements of day ozone and night hydroxyl emission rates made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument. The approach presented here uses the constraint of global, annual mean energy balance to derive atomic oxygen concentrations, consistent with rates of radiative cooling by carbon dioxide (CO2) and solar heating due to molecular oxygen (O2). The mathematical difference between these cooling and heating rates, on a global annual mean basis, effectively constrains the maximum heating rate for the sum of all other processes. The remaining terms, solar heating due to ozone plus a series of exothermic chemical reactions can be expressed as functions of O. This new approach enables a simple mathematical expression that yields the vertical profile of global annual mean “radiatively constrained” atomic oxygen in the mesopause region. The radiatively constrained atomic oxygen depends only on the CO2 cooling rates, O2 solar heating rates, and standard reaction rate coefficients and enthalpies. Radiative cooling and solar heating rates used in these analyses are derived from measurements made by the SABER instrument on the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite. There is excellent agreement between the SABER radiatively constrained atomic oxygen and that derived from the SABER ozone and OH emission measurements over most of the mesopause region. Radiatively constrained atomic oxygen represents an upper limit on the global average O‐atom concentration in the mesopause region. Key Points Net radiation constrains mesopause atomic oxygen New approach to deriving chemical composition Results allow independent validation of mesopause chemsitry</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jgrd.50400</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2013-06, Vol.118 (11), p.5796-5802
issn 2169-897X
2169-8996
language eng
recordid cdi_proquest_miscellaneous_1496896135
source Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects airglow
Annual
Atom concentration
Atomic oxygen
Broadband
Carbon dioxide
Chemical composition
Chemical reactions
Coefficients
Constraints
Cooling
Cooling rate
Dynamics
Earth, ocean, space
Emission
Emission measurements
Energy balance
Enthalpy
Exact sciences and technology
Exothermic reactions
External geophysics
Functions (mathematics)
Geophysics
Heating
Heating rate
Hydroxyl emission
Ionosphere
Mathematical analysis
Mesopause
Mesosphere
Meteorology
Net radiation
Nuclear electric power generation
Oxygen
Ozone
Radiation
Radiation balance
radiative constraints
Radiative cooling
Radiometry
Satellites
Solar heating
Thermosphere
Vertical profiles
title Radiative and energetic constraints on the global annual mean atomic oxygen concentration in the mesopause region
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T19%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiative%20and%20energetic%20constraints%20on%20the%20global%20annual%20mean%20atomic%20oxygen%20concentration%20in%20the%20mesopause%20region&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Mlynczak,%20Martin%20G.&rft.date=2013-06-16&rft.volume=118&rft.issue=11&rft.spage=5796&rft.epage=5802&rft.pages=5796-5802&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/jgrd.50400&rft_dat=%3Cproquest_cross%3E1496896135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1638335135&rft_id=info:pmid/&rfr_iscdi=true