RUNX1, but not its familial platelet disorder mutants, synergistically activates PF4 gene expression in combination with ETS family proteins

Summary Background Familial platelet disorder (FPD) is a rare autosomal dominant disease characterized by thrombocytopenia and abnormal platelet function. Causal mutations have been identified in the gene encoding runt‐related transcription factor 1 (RUNX1) of FPD patients. Objectives To elucidate t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thrombosis and haemostasis 2013-09, Vol.11 (9), p.1742-1750
Hauptverfasser: Okada, Y., Watanabe, M., Nakai, T., Kamikawa, Y., Shimizu, M., Fukuhara, Y., Yonekura, M., Matsuura, E., Hoshika, Y., Nagai, R., Aird, W. C., Doi, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1750
container_issue 9
container_start_page 1742
container_title Journal of thrombosis and haemostasis
container_volume 11
creator Okada, Y.
Watanabe, M.
Nakai, T.
Kamikawa, Y.
Shimizu, M.
Fukuhara, Y.
Yonekura, M.
Matsuura, E.
Hoshika, Y.
Nagai, R.
Aird, W. C.
Doi, T.
description Summary Background Familial platelet disorder (FPD) is a rare autosomal dominant disease characterized by thrombocytopenia and abnormal platelet function. Causal mutations have been identified in the gene encoding runt‐related transcription factor 1 (RUNX1) of FPD patients. Objectives To elucidate the role of RUNX1 in the regulation of expression of platelet factor 4 (PF4) and to propose a plausible mechanism underlying RUNX1‐mediated induction of the FPD phenotype. Methods We assessed whether RUNX1 and its mutants, in combination with E26 transformation‐specific‐1 (ETS‐1), Core‐binding factor subunit beta (CBFβ), and Friend leukemia virus integration 1 (FLI‐1), cooperatively regulate PF4 expression during megakaryocytic differentiation. In an embryonic stem cell differentiation system, expression levels of endogenous and exogenous RUNX1 and PF4 were determined by real‐time RT‐PCR. Promoter activation by the transcription factors were evaluated by reporter gene assays with HepG2 cells. DNA binding activity and protein interaction were analyzed by electrophoretic mobility shift assay and immunoprecipitation assay with Cos‐7 cells, respectively. Protein localization was analyzed by immunocytochemistry and Western blotting with Cos‐7 cells. Results We demonstrated that RUNX1 activates endogenous PF4 expression in megakaryocytic differentiation. RUNX1, but not its mutants, in combination with ETS‐1 and CBFβ, or FLI‐1, synergistically activated the PF4 promoter. Each RUNX1 mutant harbors various functional abnormalities, including loss of DNA‐binding activity, abnormal subcellular localization, and/or alterations of binding affinities for ETS‐1, CBFβ, and FLI‐1. Conclusions RUNX1, but not its mutants, strongly and synergistically activates PF4 expression along with ETS family proteins. Furthermore, loss of the RUNX1 transcriptional activation function is induced by various functional abnormalities.
doi_str_mv 10.1111/jth.12355
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1496889971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069838221</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3125-51742d248a97798b79d756f1f627d4301ce638f243e4138f0ee2e1f436f9ae923</originalsourceid><addsrcrecordid>eNqNkc1O3TAQhS1UVH7aBS9QWeqmCy7EHie2lxXipwgBKheJXeSbTMBXjhNip5B34KFr7oUuumI2c0bzaY5Gh5A9lh2wVIfL-HDAOOT5BtlmOaiZVFB8etcaYIvshLDMMqZznn0mWxyUUCKDbfLy-_byju3TxRip7yK1MdDGtNZZ42jvTESHkdY2dEONA23HaHwM-zRMHod7G6KtjHMTNVW0fxId6PWJoPfokeJzP2AItvPUelp17cJ6E1_HJxsf6PH8Zu000X7oIlofvpDNxriAX9_6Lrk9OZ4fnc0urk5_Hf28mPXAeD7LmRS85kIZLaVWC6lrmRcNawouawEZq7AA1XABKFgSGSJH1ggoGm1Qc9glP9Z3k_HjiCGWrQ0VOmc8dmMomdCFUlpL9gEUeMEkyCKh3_9Dl904-PTIigKejupEfXujxkWLddkPtjXDVL5HkoDDNfBkHU7_9iwrX7MuU9blKuvyfH62EvAX_06bOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1432329689</pqid></control><display><type>article</type><title>RUNX1, but not its familial platelet disorder mutants, synergistically activates PF4 gene expression in combination with ETS family proteins</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Okada, Y. ; Watanabe, M. ; Nakai, T. ; Kamikawa, Y. ; Shimizu, M. ; Fukuhara, Y. ; Yonekura, M. ; Matsuura, E. ; Hoshika, Y. ; Nagai, R. ; Aird, W. C. ; Doi, T.</creator><creatorcontrib>Okada, Y. ; Watanabe, M. ; Nakai, T. ; Kamikawa, Y. ; Shimizu, M. ; Fukuhara, Y. ; Yonekura, M. ; Matsuura, E. ; Hoshika, Y. ; Nagai, R. ; Aird, W. C. ; Doi, T.</creatorcontrib><description>Summary Background Familial platelet disorder (FPD) is a rare autosomal dominant disease characterized by thrombocytopenia and abnormal platelet function. Causal mutations have been identified in the gene encoding runt‐related transcription factor 1 (RUNX1) of FPD patients. Objectives To elucidate the role of RUNX1 in the regulation of expression of platelet factor 4 (PF4) and to propose a plausible mechanism underlying RUNX1‐mediated induction of the FPD phenotype. Methods We assessed whether RUNX1 and its mutants, in combination with E26 transformation‐specific‐1 (ETS‐1), Core‐binding factor subunit beta (CBFβ), and Friend leukemia virus integration 1 (FLI‐1), cooperatively regulate PF4 expression during megakaryocytic differentiation. In an embryonic stem cell differentiation system, expression levels of endogenous and exogenous RUNX1 and PF4 were determined by real‐time RT‐PCR. Promoter activation by the transcription factors were evaluated by reporter gene assays with HepG2 cells. DNA binding activity and protein interaction were analyzed by electrophoretic mobility shift assay and immunoprecipitation assay with Cos‐7 cells, respectively. Protein localization was analyzed by immunocytochemistry and Western blotting with Cos‐7 cells. Results We demonstrated that RUNX1 activates endogenous PF4 expression in megakaryocytic differentiation. RUNX1, but not its mutants, in combination with ETS‐1 and CBFβ, or FLI‐1, synergistically activated the PF4 promoter. Each RUNX1 mutant harbors various functional abnormalities, including loss of DNA‐binding activity, abnormal subcellular localization, and/or alterations of binding affinities for ETS‐1, CBFβ, and FLI‐1. Conclusions RUNX1, but not its mutants, strongly and synergistically activates PF4 expression along with ETS family proteins. Furthermore, loss of the RUNX1 transcriptional activation function is induced by various functional abnormalities.</description><identifier>ISSN: 1538-7933</identifier><identifier>EISSN: 1538-7836</identifier><identifier>DOI: 10.1111/jth.12355</identifier><identifier>PMID: 23848403</identifier><language>eng</language><publisher>England: Elsevier Limited</publisher><subject>Blood Platelet Disorders - genetics ; Cell Line ; Core Binding Factor Alpha 2 Subunit - genetics ; Core Binding Factor Alpha 2 Subunit - metabolism ; Differentiation ; Electrophoretic Mobility Shift Assay ; ETS1 protein, human ; FLI1 protein, human ; Gene expression ; Gene Expression Regulation - genetics ; Humans ; Medical research ; megakaryocytes ; Mutation ; platelet disorder, familial, with associated myeloid malignancy ; platelet factor 4 ; Platelet Factor 4 - genetics ; Proto-Oncogene Proteins c-ets - metabolism ; Real-Time Polymerase Chain Reaction ; RUNX1 protein, human ; Stem cells ; Subcellular Fractions - metabolism</subject><ispartof>Journal of thrombosis and haemostasis, 2013-09, Vol.11 (9), p.1742-1750</ispartof><rights>2013 International Society on Thrombosis and Haemostasis</rights><rights>2013 International Society on Thrombosis and Haemostasis.</rights><rights>Copyright © 2013 International Society on Thrombosis and Haemostasis</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23848403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Okada, Y.</creatorcontrib><creatorcontrib>Watanabe, M.</creatorcontrib><creatorcontrib>Nakai, T.</creatorcontrib><creatorcontrib>Kamikawa, Y.</creatorcontrib><creatorcontrib>Shimizu, M.</creatorcontrib><creatorcontrib>Fukuhara, Y.</creatorcontrib><creatorcontrib>Yonekura, M.</creatorcontrib><creatorcontrib>Matsuura, E.</creatorcontrib><creatorcontrib>Hoshika, Y.</creatorcontrib><creatorcontrib>Nagai, R.</creatorcontrib><creatorcontrib>Aird, W. C.</creatorcontrib><creatorcontrib>Doi, T.</creatorcontrib><title>RUNX1, but not its familial platelet disorder mutants, synergistically activates PF4 gene expression in combination with ETS family proteins</title><title>Journal of thrombosis and haemostasis</title><addtitle>J Thromb Haemost</addtitle><description>Summary Background Familial platelet disorder (FPD) is a rare autosomal dominant disease characterized by thrombocytopenia and abnormal platelet function. Causal mutations have been identified in the gene encoding runt‐related transcription factor 1 (RUNX1) of FPD patients. Objectives To elucidate the role of RUNX1 in the regulation of expression of platelet factor 4 (PF4) and to propose a plausible mechanism underlying RUNX1‐mediated induction of the FPD phenotype. Methods We assessed whether RUNX1 and its mutants, in combination with E26 transformation‐specific‐1 (ETS‐1), Core‐binding factor subunit beta (CBFβ), and Friend leukemia virus integration 1 (FLI‐1), cooperatively regulate PF4 expression during megakaryocytic differentiation. In an embryonic stem cell differentiation system, expression levels of endogenous and exogenous RUNX1 and PF4 were determined by real‐time RT‐PCR. Promoter activation by the transcription factors were evaluated by reporter gene assays with HepG2 cells. DNA binding activity and protein interaction were analyzed by electrophoretic mobility shift assay and immunoprecipitation assay with Cos‐7 cells, respectively. Protein localization was analyzed by immunocytochemistry and Western blotting with Cos‐7 cells. Results We demonstrated that RUNX1 activates endogenous PF4 expression in megakaryocytic differentiation. RUNX1, but not its mutants, in combination with ETS‐1 and CBFβ, or FLI‐1, synergistically activated the PF4 promoter. Each RUNX1 mutant harbors various functional abnormalities, including loss of DNA‐binding activity, abnormal subcellular localization, and/or alterations of binding affinities for ETS‐1, CBFβ, and FLI‐1. Conclusions RUNX1, but not its mutants, strongly and synergistically activates PF4 expression along with ETS family proteins. Furthermore, loss of the RUNX1 transcriptional activation function is induced by various functional abnormalities.</description><subject>Blood Platelet Disorders - genetics</subject><subject>Cell Line</subject><subject>Core Binding Factor Alpha 2 Subunit - genetics</subject><subject>Core Binding Factor Alpha 2 Subunit - metabolism</subject><subject>Differentiation</subject><subject>Electrophoretic Mobility Shift Assay</subject><subject>ETS1 protein, human</subject><subject>FLI1 protein, human</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - genetics</subject><subject>Humans</subject><subject>Medical research</subject><subject>megakaryocytes</subject><subject>Mutation</subject><subject>platelet disorder, familial, with associated myeloid malignancy</subject><subject>platelet factor 4</subject><subject>Platelet Factor 4 - genetics</subject><subject>Proto-Oncogene Proteins c-ets - metabolism</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>RUNX1 protein, human</subject><subject>Stem cells</subject><subject>Subcellular Fractions - metabolism</subject><issn>1538-7933</issn><issn>1538-7836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1O3TAQhS1UVH7aBS9QWeqmCy7EHie2lxXipwgBKheJXeSbTMBXjhNip5B34KFr7oUuumI2c0bzaY5Gh5A9lh2wVIfL-HDAOOT5BtlmOaiZVFB8etcaYIvshLDMMqZznn0mWxyUUCKDbfLy-_byju3TxRip7yK1MdDGtNZZ42jvTESHkdY2dEONA23HaHwM-zRMHod7G6KtjHMTNVW0fxId6PWJoPfokeJzP2AItvPUelp17cJ6E1_HJxsf6PH8Zu000X7oIlofvpDNxriAX9_6Lrk9OZ4fnc0urk5_Hf28mPXAeD7LmRS85kIZLaVWC6lrmRcNawouawEZq7AA1XABKFgSGSJH1ggoGm1Qc9glP9Z3k_HjiCGWrQ0VOmc8dmMomdCFUlpL9gEUeMEkyCKh3_9Dl904-PTIigKejupEfXujxkWLddkPtjXDVL5HkoDDNfBkHU7_9iwrX7MuU9blKuvyfH62EvAX_06bOA</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Okada, Y.</creator><creator>Watanabe, M.</creator><creator>Nakai, T.</creator><creator>Kamikawa, Y.</creator><creator>Shimizu, M.</creator><creator>Fukuhara, Y.</creator><creator>Yonekura, M.</creator><creator>Matsuura, E.</creator><creator>Hoshika, Y.</creator><creator>Nagai, R.</creator><creator>Aird, W. C.</creator><creator>Doi, T.</creator><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7T5</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201309</creationdate><title>RUNX1, but not its familial platelet disorder mutants, synergistically activates PF4 gene expression in combination with ETS family proteins</title><author>Okada, Y. ; Watanabe, M. ; Nakai, T. ; Kamikawa, Y. ; Shimizu, M. ; Fukuhara, Y. ; Yonekura, M. ; Matsuura, E. ; Hoshika, Y. ; Nagai, R. ; Aird, W. C. ; Doi, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3125-51742d248a97798b79d756f1f627d4301ce638f243e4138f0ee2e1f436f9ae923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Blood Platelet Disorders - genetics</topic><topic>Cell Line</topic><topic>Core Binding Factor Alpha 2 Subunit - genetics</topic><topic>Core Binding Factor Alpha 2 Subunit - metabolism</topic><topic>Differentiation</topic><topic>Electrophoretic Mobility Shift Assay</topic><topic>ETS1 protein, human</topic><topic>FLI1 protein, human</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - genetics</topic><topic>Humans</topic><topic>Medical research</topic><topic>megakaryocytes</topic><topic>Mutation</topic><topic>platelet disorder, familial, with associated myeloid malignancy</topic><topic>platelet factor 4</topic><topic>Platelet Factor 4 - genetics</topic><topic>Proto-Oncogene Proteins c-ets - metabolism</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>RUNX1 protein, human</topic><topic>Stem cells</topic><topic>Subcellular Fractions - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okada, Y.</creatorcontrib><creatorcontrib>Watanabe, M.</creatorcontrib><creatorcontrib>Nakai, T.</creatorcontrib><creatorcontrib>Kamikawa, Y.</creatorcontrib><creatorcontrib>Shimizu, M.</creatorcontrib><creatorcontrib>Fukuhara, Y.</creatorcontrib><creatorcontrib>Yonekura, M.</creatorcontrib><creatorcontrib>Matsuura, E.</creatorcontrib><creatorcontrib>Hoshika, Y.</creatorcontrib><creatorcontrib>Nagai, R.</creatorcontrib><creatorcontrib>Aird, W. C.</creatorcontrib><creatorcontrib>Doi, T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of thrombosis and haemostasis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okada, Y.</au><au>Watanabe, M.</au><au>Nakai, T.</au><au>Kamikawa, Y.</au><au>Shimizu, M.</au><au>Fukuhara, Y.</au><au>Yonekura, M.</au><au>Matsuura, E.</au><au>Hoshika, Y.</au><au>Nagai, R.</au><au>Aird, W. C.</au><au>Doi, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RUNX1, but not its familial platelet disorder mutants, synergistically activates PF4 gene expression in combination with ETS family proteins</atitle><jtitle>Journal of thrombosis and haemostasis</jtitle><addtitle>J Thromb Haemost</addtitle><date>2013-09</date><risdate>2013</risdate><volume>11</volume><issue>9</issue><spage>1742</spage><epage>1750</epage><pages>1742-1750</pages><issn>1538-7933</issn><eissn>1538-7836</eissn><abstract>Summary Background Familial platelet disorder (FPD) is a rare autosomal dominant disease characterized by thrombocytopenia and abnormal platelet function. Causal mutations have been identified in the gene encoding runt‐related transcription factor 1 (RUNX1) of FPD patients. Objectives To elucidate the role of RUNX1 in the regulation of expression of platelet factor 4 (PF4) and to propose a plausible mechanism underlying RUNX1‐mediated induction of the FPD phenotype. Methods We assessed whether RUNX1 and its mutants, in combination with E26 transformation‐specific‐1 (ETS‐1), Core‐binding factor subunit beta (CBFβ), and Friend leukemia virus integration 1 (FLI‐1), cooperatively regulate PF4 expression during megakaryocytic differentiation. In an embryonic stem cell differentiation system, expression levels of endogenous and exogenous RUNX1 and PF4 were determined by real‐time RT‐PCR. Promoter activation by the transcription factors were evaluated by reporter gene assays with HepG2 cells. DNA binding activity and protein interaction were analyzed by electrophoretic mobility shift assay and immunoprecipitation assay with Cos‐7 cells, respectively. Protein localization was analyzed by immunocytochemistry and Western blotting with Cos‐7 cells. Results We demonstrated that RUNX1 activates endogenous PF4 expression in megakaryocytic differentiation. RUNX1, but not its mutants, in combination with ETS‐1 and CBFβ, or FLI‐1, synergistically activated the PF4 promoter. Each RUNX1 mutant harbors various functional abnormalities, including loss of DNA‐binding activity, abnormal subcellular localization, and/or alterations of binding affinities for ETS‐1, CBFβ, and FLI‐1. Conclusions RUNX1, but not its mutants, strongly and synergistically activates PF4 expression along with ETS family proteins. Furthermore, loss of the RUNX1 transcriptional activation function is induced by various functional abnormalities.</abstract><cop>England</cop><pub>Elsevier Limited</pub><pmid>23848403</pmid><doi>10.1111/jth.12355</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1538-7933
ispartof Journal of thrombosis and haemostasis, 2013-09, Vol.11 (9), p.1742-1750
issn 1538-7933
1538-7836
language eng
recordid cdi_proquest_miscellaneous_1496889971
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Blood Platelet Disorders - genetics
Cell Line
Core Binding Factor Alpha 2 Subunit - genetics
Core Binding Factor Alpha 2 Subunit - metabolism
Differentiation
Electrophoretic Mobility Shift Assay
ETS1 protein, human
FLI1 protein, human
Gene expression
Gene Expression Regulation - genetics
Humans
Medical research
megakaryocytes
Mutation
platelet disorder, familial, with associated myeloid malignancy
platelet factor 4
Platelet Factor 4 - genetics
Proto-Oncogene Proteins c-ets - metabolism
Real-Time Polymerase Chain Reaction
RUNX1 protein, human
Stem cells
Subcellular Fractions - metabolism
title RUNX1, but not its familial platelet disorder mutants, synergistically activates PF4 gene expression in combination with ETS family proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RUNX1,%20but%20not%20its%20familial%20platelet%20disorder%20mutants,%20synergistically%20activates%20PF4%20gene%20expression%20in%20combination%20with%20ETS%20family%20proteins&rft.jtitle=Journal%20of%20thrombosis%20and%20haemostasis&rft.au=Okada,%20Y.&rft.date=2013-09&rft.volume=11&rft.issue=9&rft.spage=1742&rft.epage=1750&rft.pages=1742-1750&rft.issn=1538-7933&rft.eissn=1538-7836&rft_id=info:doi/10.1111/jth.12355&rft_dat=%3Cproquest_pubme%3E3069838221%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1432329689&rft_id=info:pmid/23848403&rfr_iscdi=true