millennial‐scale chronicle of evolutionary responses to cultural eutrophication in Daphnia
For an accurate assessment of the anthropogenic impacts on evolutionary change in natural populations, we need long‐term environmental, genetic and phenotypic data that predate human disturbances. Analysis of c. 1600 years of history chronicled in the sediments of South Center Lake, Minnesota, USA,...
Gespeichert in:
Veröffentlicht in: | Ecology letters 2014-03, Vol.17 (3), p.360-368 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 368 |
---|---|
container_issue | 3 |
container_start_page | 360 |
container_title | Ecology letters |
container_volume | 17 |
creator | Frisch, Dagmar Morton, Philip K Chowdhury, Priyanka Roy Culver, Billy W Colbourne, John K Weider, Lawrence J Jeyasingh, Punidan D Post, David |
description | For an accurate assessment of the anthropogenic impacts on evolutionary change in natural populations, we need long‐term environmental, genetic and phenotypic data that predate human disturbances. Analysis of c. 1600 years of history chronicled in the sediments of South Center Lake, Minnesota, USA, revealed major environmental changes beginning c. 120 years ago coinciding with the initiation of industrialised agriculture in the catchment area. Population genetic structure, analysed using DNA from dormant eggs of the keystone aquatic herbivore, Daphnia pulicaria, suggested no change for c. 1500 years prior to striking shifts associated with anthropogenic environmental alterations. Furthermore, phenotypic assays on the oldest resurrected metazoan genotypes (potentially as old as c. 700 years) indicate significant shifts in phosphorus utilisation rates compared to younger genotypes. Younger genotypes show steeper reaction norms with high growth under high phosphorus (P), and low growth under low P, while ‘ancient’ genotypes show flat reaction norms, yet higher growth efficiency under low P. Using this resurrection ecology approach, environmental, genetic and phenotypic data spanning pre‐ and post‐industrialised agricultural eras clearly reveal the evolutionary consequences of anthropogenic environmental change. |
doi_str_mv | 10.1111/ele.12237 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1496886603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1496886603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5447-52d38b3551790e7cb3b550a9b866bd4acd506240533b36b7685aa36980483e093</originalsourceid><addsrcrecordid>eNqN0ctu1DAYBeAIgWgpLHgBiISQYJH2991ZojItSEMRlwoWSJbjcRgXTxzsBOiOR-AZeRIcMh0kJCS8sRefjy-nKO4iOER5HFlvDxHGRFwr9hHlqAJM5fXdmrzfK26ldAGAcC3QzWIPUwpQC7lffNg4723XOe1_fv-RjPa2NOsYOmfyKrSl_RL8OLjQ6XhZRpv60CWbyiGUZvTDGLUv7TjE0K-d0ZMrXVc-1f06R94ubrTaJ3tnOx8U5yeLt8fPquXL0-fHT5aVYZSKiuEVkQ1hDIkarDANaRgDXTeS82ZFtVkx4JgCI6QhvBFcMq0JryVQSSzU5KB4NOf2MXwebRrUxiVjvdedDWNSiNZc5jAg_0MRMFbjKfXBX_QijLHLD5kUMEFqjrN6PCsTQ0rRtqqPbpM_SyFQUzsqt6N-t5PtvW3i2Gzsaiev6sjg4RboqYo26s649MdJJKFGkzua3Vfn7eW_T1SL5eLq6Gre4dJgv-126PhJcUEEU-_OTpV4xeTZi5PXanr8_dm3Oij9MeZbnL_BgPJFAShmlPwCrya9kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490573962</pqid></control><display><type>article</type><title>millennial‐scale chronicle of evolutionary responses to cultural eutrophication in Daphnia</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Frisch, Dagmar ; Morton, Philip K ; Chowdhury, Priyanka Roy ; Culver, Billy W ; Colbourne, John K ; Weider, Lawrence J ; Jeyasingh, Punidan D ; Post, David</creator><contributor>Post, David ; Post, David</contributor><creatorcontrib>Frisch, Dagmar ; Morton, Philip K ; Chowdhury, Priyanka Roy ; Culver, Billy W ; Colbourne, John K ; Weider, Lawrence J ; Jeyasingh, Punidan D ; Post, David ; Post, David ; Post, David</creatorcontrib><description>For an accurate assessment of the anthropogenic impacts on evolutionary change in natural populations, we need long‐term environmental, genetic and phenotypic data that predate human disturbances. Analysis of c. 1600 years of history chronicled in the sediments of South Center Lake, Minnesota, USA, revealed major environmental changes beginning c. 120 years ago coinciding with the initiation of industrialised agriculture in the catchment area. Population genetic structure, analysed using DNA from dormant eggs of the keystone aquatic herbivore, Daphnia pulicaria, suggested no change for c. 1500 years prior to striking shifts associated with anthropogenic environmental alterations. Furthermore, phenotypic assays on the oldest resurrected metazoan genotypes (potentially as old as c. 700 years) indicate significant shifts in phosphorus utilisation rates compared to younger genotypes. Younger genotypes show steeper reaction norms with high growth under high phosphorus (P), and low growth under low P, while ‘ancient’ genotypes show flat reaction norms, yet higher growth efficiency under low P. Using this resurrection ecology approach, environmental, genetic and phenotypic data spanning pre‐ and post‐industrialised agricultural eras clearly reveal the evolutionary consequences of anthropogenic environmental change.</description><identifier>ISSN: 1461-023X</identifier><identifier>EISSN: 1461-0248</identifier><identifier>DOI: 10.1111/ele.12237</identifier><identifier>PMID: 24400978</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>agricultural watersheds ; Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Biological and medical sciences ; Biological Evolution ; Daphnia ; Daphnia - genetics ; Daphnia - growth & development ; Daphnia pulicaria ; DNA ; ecology ; eggs ; Environment ; Environmental change ; Eutrophication ; Evolutionary biology ; Freshwater ; Fundamental and applied biological sciences. Psychology ; Gene Frequency ; General aspects ; Genetics of eukaryotes. Biological and molecular evolution ; Genetics, Population ; Genotype ; Genotype & phenotype ; Geologic Sediments - chemistry ; Herbivores ; Human Activities ; Humans ; Insects ; Lakes ; Linear Models ; Metazoa ; Microsatellite Repeats - genetics ; Minnesota ; nutritional physiology ; Phenotype ; phosphorus ; Phosphorus - analysis ; population genetic structure ; Population genetics ; Population genetics, reproduction patterns ; resurrection ecology ; sediments</subject><ispartof>Ecology letters, 2014-03, Vol.17 (3), p.360-368</ispartof><rights>2014 John Wiley & Sons Ltd/CNRS</rights><rights>2015 INIST-CNRS</rights><rights>2014 John Wiley & Sons Ltd/CNRS.</rights><rights>Copyright © 2014 John Wiley & Sons Ltd/CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5447-52d38b3551790e7cb3b550a9b866bd4acd506240533b36b7685aa36980483e093</citedby><cites>FETCH-LOGICAL-c5447-52d38b3551790e7cb3b550a9b866bd4acd506240533b36b7685aa36980483e093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fele.12237$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fele.12237$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28180918$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24400978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Post, David</contributor><contributor>Post, David</contributor><creatorcontrib>Frisch, Dagmar</creatorcontrib><creatorcontrib>Morton, Philip K</creatorcontrib><creatorcontrib>Chowdhury, Priyanka Roy</creatorcontrib><creatorcontrib>Culver, Billy W</creatorcontrib><creatorcontrib>Colbourne, John K</creatorcontrib><creatorcontrib>Weider, Lawrence J</creatorcontrib><creatorcontrib>Jeyasingh, Punidan D</creatorcontrib><creatorcontrib>Post, David</creatorcontrib><title>millennial‐scale chronicle of evolutionary responses to cultural eutrophication in Daphnia</title><title>Ecology letters</title><addtitle>Ecol Lett</addtitle><description>For an accurate assessment of the anthropogenic impacts on evolutionary change in natural populations, we need long‐term environmental, genetic and phenotypic data that predate human disturbances. Analysis of c. 1600 years of history chronicled in the sediments of South Center Lake, Minnesota, USA, revealed major environmental changes beginning c. 120 years ago coinciding with the initiation of industrialised agriculture in the catchment area. Population genetic structure, analysed using DNA from dormant eggs of the keystone aquatic herbivore, Daphnia pulicaria, suggested no change for c. 1500 years prior to striking shifts associated with anthropogenic environmental alterations. Furthermore, phenotypic assays on the oldest resurrected metazoan genotypes (potentially as old as c. 700 years) indicate significant shifts in phosphorus utilisation rates compared to younger genotypes. Younger genotypes show steeper reaction norms with high growth under high phosphorus (P), and low growth under low P, while ‘ancient’ genotypes show flat reaction norms, yet higher growth efficiency under low P. Using this resurrection ecology approach, environmental, genetic and phenotypic data spanning pre‐ and post‐industrialised agricultural eras clearly reveal the evolutionary consequences of anthropogenic environmental change.</description><subject>agricultural watersheds</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biological Evolution</subject><subject>Daphnia</subject><subject>Daphnia - genetics</subject><subject>Daphnia - growth & development</subject><subject>Daphnia pulicaria</subject><subject>DNA</subject><subject>ecology</subject><subject>eggs</subject><subject>Environment</subject><subject>Environmental change</subject><subject>Eutrophication</subject><subject>Evolutionary biology</subject><subject>Freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Frequency</subject><subject>General aspects</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genetics, Population</subject><subject>Genotype</subject><subject>Genotype & phenotype</subject><subject>Geologic Sediments - chemistry</subject><subject>Herbivores</subject><subject>Human Activities</subject><subject>Humans</subject><subject>Insects</subject><subject>Lakes</subject><subject>Linear Models</subject><subject>Metazoa</subject><subject>Microsatellite Repeats - genetics</subject><subject>Minnesota</subject><subject>nutritional physiology</subject><subject>Phenotype</subject><subject>phosphorus</subject><subject>Phosphorus - analysis</subject><subject>population genetic structure</subject><subject>Population genetics</subject><subject>Population genetics, reproduction patterns</subject><subject>resurrection ecology</subject><subject>sediments</subject><issn>1461-023X</issn><issn>1461-0248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0ctu1DAYBeAIgWgpLHgBiISQYJH2991ZojItSEMRlwoWSJbjcRgXTxzsBOiOR-AZeRIcMh0kJCS8sRefjy-nKO4iOER5HFlvDxHGRFwr9hHlqAJM5fXdmrzfK26ldAGAcC3QzWIPUwpQC7lffNg4723XOe1_fv-RjPa2NOsYOmfyKrSl_RL8OLjQ6XhZRpv60CWbyiGUZvTDGLUv7TjE0K-d0ZMrXVc-1f06R94ubrTaJ3tnOx8U5yeLt8fPquXL0-fHT5aVYZSKiuEVkQ1hDIkarDANaRgDXTeS82ZFtVkx4JgCI6QhvBFcMq0JryVQSSzU5KB4NOf2MXwebRrUxiVjvdedDWNSiNZc5jAg_0MRMFbjKfXBX_QijLHLD5kUMEFqjrN6PCsTQ0rRtqqPbpM_SyFQUzsqt6N-t5PtvW3i2Gzsaiev6sjg4RboqYo26s649MdJJKFGkzua3Vfn7eW_T1SL5eLq6Gre4dJgv-126PhJcUEEU-_OTpV4xeTZi5PXanr8_dm3Oij9MeZbnL_BgPJFAShmlPwCrya9kw</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Frisch, Dagmar</creator><creator>Morton, Philip K</creator><creator>Chowdhury, Priyanka Roy</creator><creator>Culver, Billy W</creator><creator>Colbourne, John K</creator><creator>Weider, Lawrence J</creator><creator>Jeyasingh, Punidan D</creator><creator>Post, David</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>M7N</scope><scope>7X8</scope><scope>7ST</scope><scope>7U6</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>201403</creationdate><title>millennial‐scale chronicle of evolutionary responses to cultural eutrophication in Daphnia</title><author>Frisch, Dagmar ; Morton, Philip K ; Chowdhury, Priyanka Roy ; Culver, Billy W ; Colbourne, John K ; Weider, Lawrence J ; Jeyasingh, Punidan D ; Post, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5447-52d38b3551790e7cb3b550a9b866bd4acd506240533b36b7685aa36980483e093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>agricultural watersheds</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biological Evolution</topic><topic>Daphnia</topic><topic>Daphnia - genetics</topic><topic>Daphnia - growth & development</topic><topic>Daphnia pulicaria</topic><topic>DNA</topic><topic>ecology</topic><topic>eggs</topic><topic>Environment</topic><topic>Environmental change</topic><topic>Eutrophication</topic><topic>Evolutionary biology</topic><topic>Freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Frequency</topic><topic>General aspects</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genetics, Population</topic><topic>Genotype</topic><topic>Genotype & phenotype</topic><topic>Geologic Sediments - chemistry</topic><topic>Herbivores</topic><topic>Human Activities</topic><topic>Humans</topic><topic>Insects</topic><topic>Lakes</topic><topic>Linear Models</topic><topic>Metazoa</topic><topic>Microsatellite Repeats - genetics</topic><topic>Minnesota</topic><topic>nutritional physiology</topic><topic>Phenotype</topic><topic>phosphorus</topic><topic>Phosphorus - analysis</topic><topic>population genetic structure</topic><topic>Population genetics</topic><topic>Population genetics, reproduction patterns</topic><topic>resurrection ecology</topic><topic>sediments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frisch, Dagmar</creatorcontrib><creatorcontrib>Morton, Philip K</creatorcontrib><creatorcontrib>Chowdhury, Priyanka Roy</creatorcontrib><creatorcontrib>Culver, Billy W</creatorcontrib><creatorcontrib>Colbourne, John K</creatorcontrib><creatorcontrib>Weider, Lawrence J</creatorcontrib><creatorcontrib>Jeyasingh, Punidan D</creatorcontrib><creatorcontrib>Post, David</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Ecology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frisch, Dagmar</au><au>Morton, Philip K</au><au>Chowdhury, Priyanka Roy</au><au>Culver, Billy W</au><au>Colbourne, John K</au><au>Weider, Lawrence J</au><au>Jeyasingh, Punidan D</au><au>Post, David</au><au>Post, David</au><au>Post, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>millennial‐scale chronicle of evolutionary responses to cultural eutrophication in Daphnia</atitle><jtitle>Ecology letters</jtitle><addtitle>Ecol Lett</addtitle><date>2014-03</date><risdate>2014</risdate><volume>17</volume><issue>3</issue><spage>360</spage><epage>368</epage><pages>360-368</pages><issn>1461-023X</issn><eissn>1461-0248</eissn><abstract>For an accurate assessment of the anthropogenic impacts on evolutionary change in natural populations, we need long‐term environmental, genetic and phenotypic data that predate human disturbances. Analysis of c. 1600 years of history chronicled in the sediments of South Center Lake, Minnesota, USA, revealed major environmental changes beginning c. 120 years ago coinciding with the initiation of industrialised agriculture in the catchment area. Population genetic structure, analysed using DNA from dormant eggs of the keystone aquatic herbivore, Daphnia pulicaria, suggested no change for c. 1500 years prior to striking shifts associated with anthropogenic environmental alterations. Furthermore, phenotypic assays on the oldest resurrected metazoan genotypes (potentially as old as c. 700 years) indicate significant shifts in phosphorus utilisation rates compared to younger genotypes. Younger genotypes show steeper reaction norms with high growth under high phosphorus (P), and low growth under low P, while ‘ancient’ genotypes show flat reaction norms, yet higher growth efficiency under low P. Using this resurrection ecology approach, environmental, genetic and phenotypic data spanning pre‐ and post‐industrialised agricultural eras clearly reveal the evolutionary consequences of anthropogenic environmental change.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>24400978</pmid><doi>10.1111/ele.12237</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1461-023X |
ispartof | Ecology letters, 2014-03, Vol.17 (3), p.360-368 |
issn | 1461-023X 1461-0248 |
language | eng |
recordid | cdi_proquest_miscellaneous_1496886603 |
source | MEDLINE; Access via Wiley Online Library |
subjects | agricultural watersheds Animal and plant ecology Animal, plant and microbial ecology Animals Biological and medical sciences Biological Evolution Daphnia Daphnia - genetics Daphnia - growth & development Daphnia pulicaria DNA ecology eggs Environment Environmental change Eutrophication Evolutionary biology Freshwater Fundamental and applied biological sciences. Psychology Gene Frequency General aspects Genetics of eukaryotes. Biological and molecular evolution Genetics, Population Genotype Genotype & phenotype Geologic Sediments - chemistry Herbivores Human Activities Humans Insects Lakes Linear Models Metazoa Microsatellite Repeats - genetics Minnesota nutritional physiology Phenotype phosphorus Phosphorus - analysis population genetic structure Population genetics Population genetics, reproduction patterns resurrection ecology sediments |
title | millennial‐scale chronicle of evolutionary responses to cultural eutrophication in Daphnia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=millennial%E2%80%90scale%20chronicle%20of%20evolutionary%20responses%20to%20cultural%20eutrophication%20in%20Daphnia&rft.jtitle=Ecology%20letters&rft.au=Frisch,%20Dagmar&rft.date=2014-03&rft.volume=17&rft.issue=3&rft.spage=360&rft.epage=368&rft.pages=360-368&rft.issn=1461-023X&rft.eissn=1461-0248&rft_id=info:doi/10.1111/ele.12237&rft_dat=%3Cproquest_cross%3E1496886603%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490573962&rft_id=info:pmid/24400978&rfr_iscdi=true |