millennial‐scale chronicle of evolutionary responses to cultural eutrophication in Daphnia

For an accurate assessment of the anthropogenic impacts on evolutionary change in natural populations, we need long‐term environmental, genetic and phenotypic data that predate human disturbances. Analysis of c. 1600 years of history chronicled in the sediments of South Center Lake, Minnesota, USA,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology letters 2014-03, Vol.17 (3), p.360-368
Hauptverfasser: Frisch, Dagmar, Morton, Philip K, Chowdhury, Priyanka Roy, Culver, Billy W, Colbourne, John K, Weider, Lawrence J, Jeyasingh, Punidan D, Post, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 368
container_issue 3
container_start_page 360
container_title Ecology letters
container_volume 17
creator Frisch, Dagmar
Morton, Philip K
Chowdhury, Priyanka Roy
Culver, Billy W
Colbourne, John K
Weider, Lawrence J
Jeyasingh, Punidan D
Post, David
description For an accurate assessment of the anthropogenic impacts on evolutionary change in natural populations, we need long‐term environmental, genetic and phenotypic data that predate human disturbances. Analysis of c. 1600 years of history chronicled in the sediments of South Center Lake, Minnesota, USA, revealed major environmental changes beginning c. 120 years ago coinciding with the initiation of industrialised agriculture in the catchment area. Population genetic structure, analysed using DNA from dormant eggs of the keystone aquatic herbivore, Daphnia pulicaria, suggested no change for c. 1500 years prior to striking shifts associated with anthropogenic environmental alterations. Furthermore, phenotypic assays on the oldest resurrected metazoan genotypes (potentially as old as c. 700 years) indicate significant shifts in phosphorus utilisation rates compared to younger genotypes. Younger genotypes show steeper reaction norms with high growth under high phosphorus (P), and low growth under low P, while ‘ancient’ genotypes show flat reaction norms, yet higher growth efficiency under low P. Using this resurrection ecology approach, environmental, genetic and phenotypic data spanning pre‐ and post‐industrialised agricultural eras clearly reveal the evolutionary consequences of anthropogenic environmental change.
doi_str_mv 10.1111/ele.12237
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1496886603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1496886603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5447-52d38b3551790e7cb3b550a9b866bd4acd506240533b36b7685aa36980483e093</originalsourceid><addsrcrecordid>eNqN0ctu1DAYBeAIgWgpLHgBiISQYJH2991ZojItSEMRlwoWSJbjcRgXTxzsBOiOR-AZeRIcMh0kJCS8sRefjy-nKO4iOER5HFlvDxHGRFwr9hHlqAJM5fXdmrzfK26ldAGAcC3QzWIPUwpQC7lffNg4723XOe1_fv-RjPa2NOsYOmfyKrSl_RL8OLjQ6XhZRpv60CWbyiGUZvTDGLUv7TjE0K-d0ZMrXVc-1f06R94ubrTaJ3tnOx8U5yeLt8fPquXL0-fHT5aVYZSKiuEVkQ1hDIkarDANaRgDXTeS82ZFtVkx4JgCI6QhvBFcMq0JryVQSSzU5KB4NOf2MXwebRrUxiVjvdedDWNSiNZc5jAg_0MRMFbjKfXBX_QijLHLD5kUMEFqjrN6PCsTQ0rRtqqPbpM_SyFQUzsqt6N-t5PtvW3i2Gzsaiev6sjg4RboqYo26s649MdJJKFGkzua3Vfn7eW_T1SL5eLq6Gre4dJgv-126PhJcUEEU-_OTpV4xeTZi5PXanr8_dm3Oij9MeZbnL_BgPJFAShmlPwCrya9kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490573962</pqid></control><display><type>article</type><title>millennial‐scale chronicle of evolutionary responses to cultural eutrophication in Daphnia</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Frisch, Dagmar ; Morton, Philip K ; Chowdhury, Priyanka Roy ; Culver, Billy W ; Colbourne, John K ; Weider, Lawrence J ; Jeyasingh, Punidan D ; Post, David</creator><contributor>Post, David ; Post, David</contributor><creatorcontrib>Frisch, Dagmar ; Morton, Philip K ; Chowdhury, Priyanka Roy ; Culver, Billy W ; Colbourne, John K ; Weider, Lawrence J ; Jeyasingh, Punidan D ; Post, David ; Post, David ; Post, David</creatorcontrib><description>For an accurate assessment of the anthropogenic impacts on evolutionary change in natural populations, we need long‐term environmental, genetic and phenotypic data that predate human disturbances. Analysis of c. 1600 years of history chronicled in the sediments of South Center Lake, Minnesota, USA, revealed major environmental changes beginning c. 120 years ago coinciding with the initiation of industrialised agriculture in the catchment area. Population genetic structure, analysed using DNA from dormant eggs of the keystone aquatic herbivore, Daphnia pulicaria, suggested no change for c. 1500 years prior to striking shifts associated with anthropogenic environmental alterations. Furthermore, phenotypic assays on the oldest resurrected metazoan genotypes (potentially as old as c. 700 years) indicate significant shifts in phosphorus utilisation rates compared to younger genotypes. Younger genotypes show steeper reaction norms with high growth under high phosphorus (P), and low growth under low P, while ‘ancient’ genotypes show flat reaction norms, yet higher growth efficiency under low P. Using this resurrection ecology approach, environmental, genetic and phenotypic data spanning pre‐ and post‐industrialised agricultural eras clearly reveal the evolutionary consequences of anthropogenic environmental change.</description><identifier>ISSN: 1461-023X</identifier><identifier>EISSN: 1461-0248</identifier><identifier>DOI: 10.1111/ele.12237</identifier><identifier>PMID: 24400978</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>agricultural watersheds ; Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Biological and medical sciences ; Biological Evolution ; Daphnia ; Daphnia - genetics ; Daphnia - growth &amp; development ; Daphnia pulicaria ; DNA ; ecology ; eggs ; Environment ; Environmental change ; Eutrophication ; Evolutionary biology ; Freshwater ; Fundamental and applied biological sciences. Psychology ; Gene Frequency ; General aspects ; Genetics of eukaryotes. Biological and molecular evolution ; Genetics, Population ; Genotype ; Genotype &amp; phenotype ; Geologic Sediments - chemistry ; Herbivores ; Human Activities ; Humans ; Insects ; Lakes ; Linear Models ; Metazoa ; Microsatellite Repeats - genetics ; Minnesota ; nutritional physiology ; Phenotype ; phosphorus ; Phosphorus - analysis ; population genetic structure ; Population genetics ; Population genetics, reproduction patterns ; resurrection ecology ; sediments</subject><ispartof>Ecology letters, 2014-03, Vol.17 (3), p.360-368</ispartof><rights>2014 John Wiley &amp; Sons Ltd/CNRS</rights><rights>2015 INIST-CNRS</rights><rights>2014 John Wiley &amp; Sons Ltd/CNRS.</rights><rights>Copyright © 2014 John Wiley &amp; Sons Ltd/CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5447-52d38b3551790e7cb3b550a9b866bd4acd506240533b36b7685aa36980483e093</citedby><cites>FETCH-LOGICAL-c5447-52d38b3551790e7cb3b550a9b866bd4acd506240533b36b7685aa36980483e093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fele.12237$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fele.12237$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28180918$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24400978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Post, David</contributor><contributor>Post, David</contributor><creatorcontrib>Frisch, Dagmar</creatorcontrib><creatorcontrib>Morton, Philip K</creatorcontrib><creatorcontrib>Chowdhury, Priyanka Roy</creatorcontrib><creatorcontrib>Culver, Billy W</creatorcontrib><creatorcontrib>Colbourne, John K</creatorcontrib><creatorcontrib>Weider, Lawrence J</creatorcontrib><creatorcontrib>Jeyasingh, Punidan D</creatorcontrib><creatorcontrib>Post, David</creatorcontrib><title>millennial‐scale chronicle of evolutionary responses to cultural eutrophication in Daphnia</title><title>Ecology letters</title><addtitle>Ecol Lett</addtitle><description>For an accurate assessment of the anthropogenic impacts on evolutionary change in natural populations, we need long‐term environmental, genetic and phenotypic data that predate human disturbances. Analysis of c. 1600 years of history chronicled in the sediments of South Center Lake, Minnesota, USA, revealed major environmental changes beginning c. 120 years ago coinciding with the initiation of industrialised agriculture in the catchment area. Population genetic structure, analysed using DNA from dormant eggs of the keystone aquatic herbivore, Daphnia pulicaria, suggested no change for c. 1500 years prior to striking shifts associated with anthropogenic environmental alterations. Furthermore, phenotypic assays on the oldest resurrected metazoan genotypes (potentially as old as c. 700 years) indicate significant shifts in phosphorus utilisation rates compared to younger genotypes. Younger genotypes show steeper reaction norms with high growth under high phosphorus (P), and low growth under low P, while ‘ancient’ genotypes show flat reaction norms, yet higher growth efficiency under low P. Using this resurrection ecology approach, environmental, genetic and phenotypic data spanning pre‐ and post‐industrialised agricultural eras clearly reveal the evolutionary consequences of anthropogenic environmental change.</description><subject>agricultural watersheds</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biological Evolution</subject><subject>Daphnia</subject><subject>Daphnia - genetics</subject><subject>Daphnia - growth &amp; development</subject><subject>Daphnia pulicaria</subject><subject>DNA</subject><subject>ecology</subject><subject>eggs</subject><subject>Environment</subject><subject>Environmental change</subject><subject>Eutrophication</subject><subject>Evolutionary biology</subject><subject>Freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Frequency</subject><subject>General aspects</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genetics, Population</subject><subject>Genotype</subject><subject>Genotype &amp; phenotype</subject><subject>Geologic Sediments - chemistry</subject><subject>Herbivores</subject><subject>Human Activities</subject><subject>Humans</subject><subject>Insects</subject><subject>Lakes</subject><subject>Linear Models</subject><subject>Metazoa</subject><subject>Microsatellite Repeats - genetics</subject><subject>Minnesota</subject><subject>nutritional physiology</subject><subject>Phenotype</subject><subject>phosphorus</subject><subject>Phosphorus - analysis</subject><subject>population genetic structure</subject><subject>Population genetics</subject><subject>Population genetics, reproduction patterns</subject><subject>resurrection ecology</subject><subject>sediments</subject><issn>1461-023X</issn><issn>1461-0248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0ctu1DAYBeAIgWgpLHgBiISQYJH2991ZojItSEMRlwoWSJbjcRgXTxzsBOiOR-AZeRIcMh0kJCS8sRefjy-nKO4iOER5HFlvDxHGRFwr9hHlqAJM5fXdmrzfK26ldAGAcC3QzWIPUwpQC7lffNg4723XOe1_fv-RjPa2NOsYOmfyKrSl_RL8OLjQ6XhZRpv60CWbyiGUZvTDGLUv7TjE0K-d0ZMrXVc-1f06R94ubrTaJ3tnOx8U5yeLt8fPquXL0-fHT5aVYZSKiuEVkQ1hDIkarDANaRgDXTeS82ZFtVkx4JgCI6QhvBFcMq0JryVQSSzU5KB4NOf2MXwebRrUxiVjvdedDWNSiNZc5jAg_0MRMFbjKfXBX_QijLHLD5kUMEFqjrN6PCsTQ0rRtqqPbpM_SyFQUzsqt6N-t5PtvW3i2Gzsaiev6sjg4RboqYo26s649MdJJKFGkzua3Vfn7eW_T1SL5eLq6Gre4dJgv-126PhJcUEEU-_OTpV4xeTZi5PXanr8_dm3Oij9MeZbnL_BgPJFAShmlPwCrya9kw</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Frisch, Dagmar</creator><creator>Morton, Philip K</creator><creator>Chowdhury, Priyanka Roy</creator><creator>Culver, Billy W</creator><creator>Colbourne, John K</creator><creator>Weider, Lawrence J</creator><creator>Jeyasingh, Punidan D</creator><creator>Post, David</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>M7N</scope><scope>7X8</scope><scope>7ST</scope><scope>7U6</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>201403</creationdate><title>millennial‐scale chronicle of evolutionary responses to cultural eutrophication in Daphnia</title><author>Frisch, Dagmar ; Morton, Philip K ; Chowdhury, Priyanka Roy ; Culver, Billy W ; Colbourne, John K ; Weider, Lawrence J ; Jeyasingh, Punidan D ; Post, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5447-52d38b3551790e7cb3b550a9b866bd4acd506240533b36b7685aa36980483e093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>agricultural watersheds</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biological Evolution</topic><topic>Daphnia</topic><topic>Daphnia - genetics</topic><topic>Daphnia - growth &amp; development</topic><topic>Daphnia pulicaria</topic><topic>DNA</topic><topic>ecology</topic><topic>eggs</topic><topic>Environment</topic><topic>Environmental change</topic><topic>Eutrophication</topic><topic>Evolutionary biology</topic><topic>Freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Frequency</topic><topic>General aspects</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genetics, Population</topic><topic>Genotype</topic><topic>Genotype &amp; phenotype</topic><topic>Geologic Sediments - chemistry</topic><topic>Herbivores</topic><topic>Human Activities</topic><topic>Humans</topic><topic>Insects</topic><topic>Lakes</topic><topic>Linear Models</topic><topic>Metazoa</topic><topic>Microsatellite Repeats - genetics</topic><topic>Minnesota</topic><topic>nutritional physiology</topic><topic>Phenotype</topic><topic>phosphorus</topic><topic>Phosphorus - analysis</topic><topic>population genetic structure</topic><topic>Population genetics</topic><topic>Population genetics, reproduction patterns</topic><topic>resurrection ecology</topic><topic>sediments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frisch, Dagmar</creatorcontrib><creatorcontrib>Morton, Philip K</creatorcontrib><creatorcontrib>Chowdhury, Priyanka Roy</creatorcontrib><creatorcontrib>Culver, Billy W</creatorcontrib><creatorcontrib>Colbourne, John K</creatorcontrib><creatorcontrib>Weider, Lawrence J</creatorcontrib><creatorcontrib>Jeyasingh, Punidan D</creatorcontrib><creatorcontrib>Post, David</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Ecology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frisch, Dagmar</au><au>Morton, Philip K</au><au>Chowdhury, Priyanka Roy</au><au>Culver, Billy W</au><au>Colbourne, John K</au><au>Weider, Lawrence J</au><au>Jeyasingh, Punidan D</au><au>Post, David</au><au>Post, David</au><au>Post, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>millennial‐scale chronicle of evolutionary responses to cultural eutrophication in Daphnia</atitle><jtitle>Ecology letters</jtitle><addtitle>Ecol Lett</addtitle><date>2014-03</date><risdate>2014</risdate><volume>17</volume><issue>3</issue><spage>360</spage><epage>368</epage><pages>360-368</pages><issn>1461-023X</issn><eissn>1461-0248</eissn><abstract>For an accurate assessment of the anthropogenic impacts on evolutionary change in natural populations, we need long‐term environmental, genetic and phenotypic data that predate human disturbances. Analysis of c. 1600 years of history chronicled in the sediments of South Center Lake, Minnesota, USA, revealed major environmental changes beginning c. 120 years ago coinciding with the initiation of industrialised agriculture in the catchment area. Population genetic structure, analysed using DNA from dormant eggs of the keystone aquatic herbivore, Daphnia pulicaria, suggested no change for c. 1500 years prior to striking shifts associated with anthropogenic environmental alterations. Furthermore, phenotypic assays on the oldest resurrected metazoan genotypes (potentially as old as c. 700 years) indicate significant shifts in phosphorus utilisation rates compared to younger genotypes. Younger genotypes show steeper reaction norms with high growth under high phosphorus (P), and low growth under low P, while ‘ancient’ genotypes show flat reaction norms, yet higher growth efficiency under low P. Using this resurrection ecology approach, environmental, genetic and phenotypic data spanning pre‐ and post‐industrialised agricultural eras clearly reveal the evolutionary consequences of anthropogenic environmental change.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>24400978</pmid><doi>10.1111/ele.12237</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1461-023X
ispartof Ecology letters, 2014-03, Vol.17 (3), p.360-368
issn 1461-023X
1461-0248
language eng
recordid cdi_proquest_miscellaneous_1496886603
source MEDLINE; Access via Wiley Online Library
subjects agricultural watersheds
Animal and plant ecology
Animal, plant and microbial ecology
Animals
Biological and medical sciences
Biological Evolution
Daphnia
Daphnia - genetics
Daphnia - growth & development
Daphnia pulicaria
DNA
ecology
eggs
Environment
Environmental change
Eutrophication
Evolutionary biology
Freshwater
Fundamental and applied biological sciences. Psychology
Gene Frequency
General aspects
Genetics of eukaryotes. Biological and molecular evolution
Genetics, Population
Genotype
Genotype & phenotype
Geologic Sediments - chemistry
Herbivores
Human Activities
Humans
Insects
Lakes
Linear Models
Metazoa
Microsatellite Repeats - genetics
Minnesota
nutritional physiology
Phenotype
phosphorus
Phosphorus - analysis
population genetic structure
Population genetics
Population genetics, reproduction patterns
resurrection ecology
sediments
title millennial‐scale chronicle of evolutionary responses to cultural eutrophication in Daphnia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=millennial%E2%80%90scale%20chronicle%20of%20evolutionary%20responses%20to%20cultural%20eutrophication%20in%20Daphnia&rft.jtitle=Ecology%20letters&rft.au=Frisch,%20Dagmar&rft.date=2014-03&rft.volume=17&rft.issue=3&rft.spage=360&rft.epage=368&rft.pages=360-368&rft.issn=1461-023X&rft.eissn=1461-0248&rft_id=info:doi/10.1111/ele.12237&rft_dat=%3Cproquest_cross%3E1496886603%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490573962&rft_id=info:pmid/24400978&rfr_iscdi=true