Role of Sulfur in Increasing Guinea Grass Tolerance of Copper Phytotoxicity

Soil pollution with trace elements is a growing problem with serious environmental impacts and developing strategies to reduce those impacts is a high priority. The objectives of this study were to assess the role of sulfur (S) in reducing the phytotoxic effects of copper (Cu) and the appearance of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water, air, and soil pollution air, and soil pollution, 2014, Vol.225 (1), p.1-10, Article 1806
Hauptverfasser: Gilabel, Amanda Prado, Nogueirol, Roberta Corrêa, Garbo, Alessandra Inácio, Monteiro, Francisco Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 1
container_title Water, air, and soil pollution
container_volume 225
creator Gilabel, Amanda Prado
Nogueirol, Roberta Corrêa
Garbo, Alessandra Inácio
Monteiro, Francisco Antonio
description Soil pollution with trace elements is a growing problem with serious environmental impacts and developing strategies to reduce those impacts is a high priority. The objectives of this study were to assess the role of sulfur (S) in reducing the phytotoxic effects of copper (Cu) and the appearance of oxidative stress due to excess Cu in the growth medium and to assess the potential of guinea grass for Cu phytoremediation. The experiment was carried out in a greenhouse, where the forage grass Panicum maximum cv. Tanzânia was grown with a nutrient solution containing combinations of three S concentrations (0.1, 2, and 4 mmol L⁻¹) and four Cu concentrations (0.3, 100, 500, and 1,000 μmol L⁻¹) using a 3 × 4 factorial design in complete randomized blocks with four replicates. The following variables were measured: shoot and root dry mass production, leaf and tiller number, S and Cu concentrations in diagnostic leaves and roots, H₂O₂, lipid peroxidation, and proline levels in the diagnostic leaves. Very high Cu availability (1,000 μmol L⁻¹) that resulted in Cu concentration higher than 60 mg kg⁻¹ in diagnostic leaves caused more than 50 % reduction in shoot and root dry mass production about 30–40 % in the number of leaves and tillers around 20 % increase in lipid peroxidation and more than 10 times increase in proline production. Plants properly fed with S showed mitigation to Cu toxicity. Guinea grass showed promise as an agent in the phytoremediation of Cu-polluted areas.
doi_str_mv 10.1007/s11270-013-1806-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1496885781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A360796512</galeid><sourcerecordid>A360796512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-9a336103a0c1be9b4fd8e3d78a0d3a62c71f8927b1467ddf5c8f534d689d53aa3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQQIMoOK7-AE82ePHSayrpfB2XQcfFBcXdPYeadDJm6UnGpBucf2_W9iAeTA6B4r1Q8Ah5DfQSKFXvKwBTtKfAe9BU9voJ2YBQvGeGs6dkQ-lgemmUeU5e1PpA2zFabcjnb3nyXQ7d7TKFpXQxddfJFY81pkO3W2Ly2O0K1trdNbJgcr_xbT6dfOm-fj_Pec4_o4vz-SV5FnCq_tWf94Lcf_xwt_3U33zZXW-vbno3AJt7g5xLoBypg703-yGM2vNRaaQjR8mcgqANU3sYpBrHIJwOgg-j1GYUHJFfkHfrv6eSfyy-zvYYq_PThMnnpVoYjNRaKA0NffsP-pCXktp2jVKSCS3N0KjLlTrg5G1MIc8FXbujP0aXkw-xza-4pMpIAawJsAqu5FqLD_ZU4hHL2QK1jz3s2sO2Hvaxh9XNYatTG5sOvvy1yn-kN6sUMFs8lFjt_S2jMLR-AgQH_gtZ8JTt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1476258694</pqid></control><display><type>article</type><title>Role of Sulfur in Increasing Guinea Grass Tolerance of Copper Phytotoxicity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gilabel, Amanda Prado ; Nogueirol, Roberta Corrêa ; Garbo, Alessandra Inácio ; Monteiro, Francisco Antonio</creator><creatorcontrib>Gilabel, Amanda Prado ; Nogueirol, Roberta Corrêa ; Garbo, Alessandra Inácio ; Monteiro, Francisco Antonio</creatorcontrib><description>Soil pollution with trace elements is a growing problem with serious environmental impacts and developing strategies to reduce those impacts is a high priority. The objectives of this study were to assess the role of sulfur (S) in reducing the phytotoxic effects of copper (Cu) and the appearance of oxidative stress due to excess Cu in the growth medium and to assess the potential of guinea grass for Cu phytoremediation. The experiment was carried out in a greenhouse, where the forage grass Panicum maximum cv. Tanzânia was grown with a nutrient solution containing combinations of three S concentrations (0.1, 2, and 4 mmol L⁻¹) and four Cu concentrations (0.3, 100, 500, and 1,000 μmol L⁻¹) using a 3 × 4 factorial design in complete randomized blocks with four replicates. The following variables were measured: shoot and root dry mass production, leaf and tiller number, S and Cu concentrations in diagnostic leaves and roots, H₂O₂, lipid peroxidation, and proline levels in the diagnostic leaves. Very high Cu availability (1,000 μmol L⁻¹) that resulted in Cu concentration higher than 60 mg kg⁻¹ in diagnostic leaves caused more than 50 % reduction in shoot and root dry mass production about 30–40 % in the number of leaves and tillers around 20 % increase in lipid peroxidation and more than 10 times increase in proline production. Plants properly fed with S showed mitigation to Cu toxicity. Guinea grass showed promise as an agent in the phytoremediation of Cu-polluted areas.</description><identifier>ISSN: 0049-6979</identifier><identifier>EISSN: 1573-2932</identifier><identifier>DOI: 10.1007/s11270-013-1806-8</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>Amino acids ; Atmospheric carbon dioxide ; Atmospheric Protection/Air Quality Control/Air Pollution ; Climate Change/Climate Change Impacts ; Copper ; culture media ; Earth and Environmental Science ; Environment ; Environmental impact ; Environmental management ; Environmental monitoring ; Environmental studies ; Enzymes ; Experiments ; forage grasses ; Grasses ; greenhouses ; Harvest ; Heavy metals ; Hydrogen peroxide ; Hydrogeology ; Leaves ; Lipid peroxidation ; Lipids ; Metabolism ; Metals ; Nutrient concentrations ; Nutrition ; Oxidative stress ; Panicum maximum ; Peroxidation ; Phytoremediation ; Phytotoxicity ; Proline ; roots ; shoots ; Soil pollution ; Soil Science &amp; Conservation ; Soil sciences ; Sulfur ; Sulfur compounds ; Tillers ; Toxicity ; Trace elements ; Water Quality/Water Pollution</subject><ispartof>Water, air, and soil pollution, 2014, Vol.225 (1), p.1-10, Article 1806</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Springer Science+Business Media Dordrecht 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-9a336103a0c1be9b4fd8e3d78a0d3a62c71f8927b1467ddf5c8f534d689d53aa3</citedby><cites>FETCH-LOGICAL-c412t-9a336103a0c1be9b4fd8e3d78a0d3a62c71f8927b1467ddf5c8f534d689d53aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11270-013-1806-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11270-013-1806-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gilabel, Amanda Prado</creatorcontrib><creatorcontrib>Nogueirol, Roberta Corrêa</creatorcontrib><creatorcontrib>Garbo, Alessandra Inácio</creatorcontrib><creatorcontrib>Monteiro, Francisco Antonio</creatorcontrib><title>Role of Sulfur in Increasing Guinea Grass Tolerance of Copper Phytotoxicity</title><title>Water, air, and soil pollution</title><addtitle>Water Air Soil Pollut</addtitle><description>Soil pollution with trace elements is a growing problem with serious environmental impacts and developing strategies to reduce those impacts is a high priority. The objectives of this study were to assess the role of sulfur (S) in reducing the phytotoxic effects of copper (Cu) and the appearance of oxidative stress due to excess Cu in the growth medium and to assess the potential of guinea grass for Cu phytoremediation. The experiment was carried out in a greenhouse, where the forage grass Panicum maximum cv. Tanzânia was grown with a nutrient solution containing combinations of three S concentrations (0.1, 2, and 4 mmol L⁻¹) and four Cu concentrations (0.3, 100, 500, and 1,000 μmol L⁻¹) using a 3 × 4 factorial design in complete randomized blocks with four replicates. The following variables were measured: shoot and root dry mass production, leaf and tiller number, S and Cu concentrations in diagnostic leaves and roots, H₂O₂, lipid peroxidation, and proline levels in the diagnostic leaves. Very high Cu availability (1,000 μmol L⁻¹) that resulted in Cu concentration higher than 60 mg kg⁻¹ in diagnostic leaves caused more than 50 % reduction in shoot and root dry mass production about 30–40 % in the number of leaves and tillers around 20 % increase in lipid peroxidation and more than 10 times increase in proline production. Plants properly fed with S showed mitigation to Cu toxicity. Guinea grass showed promise as an agent in the phytoremediation of Cu-polluted areas.</description><subject>Amino acids</subject><subject>Atmospheric carbon dioxide</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Copper</subject><subject>culture media</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental impact</subject><subject>Environmental management</subject><subject>Environmental monitoring</subject><subject>Environmental studies</subject><subject>Enzymes</subject><subject>Experiments</subject><subject>forage grasses</subject><subject>Grasses</subject><subject>greenhouses</subject><subject>Harvest</subject><subject>Heavy metals</subject><subject>Hydrogen peroxide</subject><subject>Hydrogeology</subject><subject>Leaves</subject><subject>Lipid peroxidation</subject><subject>Lipids</subject><subject>Metabolism</subject><subject>Metals</subject><subject>Nutrient concentrations</subject><subject>Nutrition</subject><subject>Oxidative stress</subject><subject>Panicum maximum</subject><subject>Peroxidation</subject><subject>Phytoremediation</subject><subject>Phytotoxicity</subject><subject>Proline</subject><subject>roots</subject><subject>shoots</subject><subject>Soil pollution</subject><subject>Soil Science &amp; Conservation</subject><subject>Soil sciences</subject><subject>Sulfur</subject><subject>Sulfur compounds</subject><subject>Tillers</subject><subject>Toxicity</subject><subject>Trace elements</subject><subject>Water Quality/Water Pollution</subject><issn>0049-6979</issn><issn>1573-2932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU2LFDEQQIMoOK7-AE82ePHSayrpfB2XQcfFBcXdPYeadDJm6UnGpBucf2_W9iAeTA6B4r1Q8Ah5DfQSKFXvKwBTtKfAe9BU9voJ2YBQvGeGs6dkQ-lgemmUeU5e1PpA2zFabcjnb3nyXQ7d7TKFpXQxddfJFY81pkO3W2Ly2O0K1trdNbJgcr_xbT6dfOm-fj_Pec4_o4vz-SV5FnCq_tWf94Lcf_xwt_3U33zZXW-vbno3AJt7g5xLoBypg703-yGM2vNRaaQjR8mcgqANU3sYpBrHIJwOgg-j1GYUHJFfkHfrv6eSfyy-zvYYq_PThMnnpVoYjNRaKA0NffsP-pCXktp2jVKSCS3N0KjLlTrg5G1MIc8FXbujP0aXkw-xza-4pMpIAawJsAqu5FqLD_ZU4hHL2QK1jz3s2sO2Hvaxh9XNYatTG5sOvvy1yn-kN6sUMFs8lFjt_S2jMLR-AgQH_gtZ8JTt</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Gilabel, Amanda Prado</creator><creator>Nogueirol, Roberta Corrêa</creator><creator>Garbo, Alessandra Inácio</creator><creator>Monteiro, Francisco Antonio</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>2014</creationdate><title>Role of Sulfur in Increasing Guinea Grass Tolerance of Copper Phytotoxicity</title><author>Gilabel, Amanda Prado ; Nogueirol, Roberta Corrêa ; Garbo, Alessandra Inácio ; Monteiro, Francisco Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-9a336103a0c1be9b4fd8e3d78a0d3a62c71f8927b1467ddf5c8f534d689d53aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino acids</topic><topic>Atmospheric carbon dioxide</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Copper</topic><topic>culture media</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental impact</topic><topic>Environmental management</topic><topic>Environmental monitoring</topic><topic>Environmental studies</topic><topic>Enzymes</topic><topic>Experiments</topic><topic>forage grasses</topic><topic>Grasses</topic><topic>greenhouses</topic><topic>Harvest</topic><topic>Heavy metals</topic><topic>Hydrogen peroxide</topic><topic>Hydrogeology</topic><topic>Leaves</topic><topic>Lipid peroxidation</topic><topic>Lipids</topic><topic>Metabolism</topic><topic>Metals</topic><topic>Nutrient concentrations</topic><topic>Nutrition</topic><topic>Oxidative stress</topic><topic>Panicum maximum</topic><topic>Peroxidation</topic><topic>Phytoremediation</topic><topic>Phytotoxicity</topic><topic>Proline</topic><topic>roots</topic><topic>shoots</topic><topic>Soil pollution</topic><topic>Soil Science &amp; Conservation</topic><topic>Soil sciences</topic><topic>Sulfur</topic><topic>Sulfur compounds</topic><topic>Tillers</topic><topic>Toxicity</topic><topic>Trace elements</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilabel, Amanda Prado</creatorcontrib><creatorcontrib>Nogueirol, Roberta Corrêa</creatorcontrib><creatorcontrib>Garbo, Alessandra Inácio</creatorcontrib><creatorcontrib>Monteiro, Francisco Antonio</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Water, air, and soil pollution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilabel, Amanda Prado</au><au>Nogueirol, Roberta Corrêa</au><au>Garbo, Alessandra Inácio</au><au>Monteiro, Francisco Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Sulfur in Increasing Guinea Grass Tolerance of Copper Phytotoxicity</atitle><jtitle>Water, air, and soil pollution</jtitle><stitle>Water Air Soil Pollut</stitle><date>2014</date><risdate>2014</risdate><volume>225</volume><issue>1</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><artnum>1806</artnum><issn>0049-6979</issn><eissn>1573-2932</eissn><abstract>Soil pollution with trace elements is a growing problem with serious environmental impacts and developing strategies to reduce those impacts is a high priority. The objectives of this study were to assess the role of sulfur (S) in reducing the phytotoxic effects of copper (Cu) and the appearance of oxidative stress due to excess Cu in the growth medium and to assess the potential of guinea grass for Cu phytoremediation. The experiment was carried out in a greenhouse, where the forage grass Panicum maximum cv. Tanzânia was grown with a nutrient solution containing combinations of three S concentrations (0.1, 2, and 4 mmol L⁻¹) and four Cu concentrations (0.3, 100, 500, and 1,000 μmol L⁻¹) using a 3 × 4 factorial design in complete randomized blocks with four replicates. The following variables were measured: shoot and root dry mass production, leaf and tiller number, S and Cu concentrations in diagnostic leaves and roots, H₂O₂, lipid peroxidation, and proline levels in the diagnostic leaves. Very high Cu availability (1,000 μmol L⁻¹) that resulted in Cu concentration higher than 60 mg kg⁻¹ in diagnostic leaves caused more than 50 % reduction in shoot and root dry mass production about 30–40 % in the number of leaves and tillers around 20 % increase in lipid peroxidation and more than 10 times increase in proline production. Plants properly fed with S showed mitigation to Cu toxicity. Guinea grass showed promise as an agent in the phytoremediation of Cu-polluted areas.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><doi>10.1007/s11270-013-1806-8</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0049-6979
ispartof Water, air, and soil pollution, 2014, Vol.225 (1), p.1-10, Article 1806
issn 0049-6979
1573-2932
language eng
recordid cdi_proquest_miscellaneous_1496885781
source SpringerLink Journals - AutoHoldings
subjects Amino acids
Atmospheric carbon dioxide
Atmospheric Protection/Air Quality Control/Air Pollution
Climate Change/Climate Change Impacts
Copper
culture media
Earth and Environmental Science
Environment
Environmental impact
Environmental management
Environmental monitoring
Environmental studies
Enzymes
Experiments
forage grasses
Grasses
greenhouses
Harvest
Heavy metals
Hydrogen peroxide
Hydrogeology
Leaves
Lipid peroxidation
Lipids
Metabolism
Metals
Nutrient concentrations
Nutrition
Oxidative stress
Panicum maximum
Peroxidation
Phytoremediation
Phytotoxicity
Proline
roots
shoots
Soil pollution
Soil Science & Conservation
Soil sciences
Sulfur
Sulfur compounds
Tillers
Toxicity
Trace elements
Water Quality/Water Pollution
title Role of Sulfur in Increasing Guinea Grass Tolerance of Copper Phytotoxicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Sulfur%20in%20Increasing%20Guinea%20Grass%20Tolerance%20of%20Copper%20Phytotoxicity&rft.jtitle=Water,%20air,%20and%20soil%20pollution&rft.au=Gilabel,%20Amanda%20Prado&rft.date=2014&rft.volume=225&rft.issue=1&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.artnum=1806&rft.issn=0049-6979&rft.eissn=1573-2932&rft_id=info:doi/10.1007/s11270-013-1806-8&rft_dat=%3Cgale_proqu%3EA360796512%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1476258694&rft_id=info:pmid/&rft_galeid=A360796512&rfr_iscdi=true