Role of Sulfur in Increasing Guinea Grass Tolerance of Copper Phytotoxicity
Soil pollution with trace elements is a growing problem with serious environmental impacts and developing strategies to reduce those impacts is a high priority. The objectives of this study were to assess the role of sulfur (S) in reducing the phytotoxic effects of copper (Cu) and the appearance of...
Gespeichert in:
Veröffentlicht in: | Water, air, and soil pollution air, and soil pollution, 2014, Vol.225 (1), p.1-10, Article 1806 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Water, air, and soil pollution |
container_volume | 225 |
creator | Gilabel, Amanda Prado Nogueirol, Roberta Corrêa Garbo, Alessandra Inácio Monteiro, Francisco Antonio |
description | Soil pollution with trace elements is a growing problem with serious environmental impacts and developing strategies to reduce those impacts is a high priority. The objectives of this study were to assess the role of sulfur (S) in reducing the phytotoxic effects of copper (Cu) and the appearance of oxidative stress due to excess Cu in the growth medium and to assess the potential of guinea grass for Cu phytoremediation. The experiment was carried out in a greenhouse, where the forage grass Panicum maximum cv. Tanzânia was grown with a nutrient solution containing combinations of three S concentrations (0.1, 2, and 4 mmol L⁻¹) and four Cu concentrations (0.3, 100, 500, and 1,000 μmol L⁻¹) using a 3 × 4 factorial design in complete randomized blocks with four replicates. The following variables were measured: shoot and root dry mass production, leaf and tiller number, S and Cu concentrations in diagnostic leaves and roots, H₂O₂, lipid peroxidation, and proline levels in the diagnostic leaves. Very high Cu availability (1,000 μmol L⁻¹) that resulted in Cu concentration higher than 60 mg kg⁻¹ in diagnostic leaves caused more than 50 % reduction in shoot and root dry mass production about 30–40 % in the number of leaves and tillers around 20 % increase in lipid peroxidation and more than 10 times increase in proline production. Plants properly fed with S showed mitigation to Cu toxicity. Guinea grass showed promise as an agent in the phytoremediation of Cu-polluted areas. |
doi_str_mv | 10.1007/s11270-013-1806-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1496885781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A360796512</galeid><sourcerecordid>A360796512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-9a336103a0c1be9b4fd8e3d78a0d3a62c71f8927b1467ddf5c8f534d689d53aa3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQQIMoOK7-AE82ePHSayrpfB2XQcfFBcXdPYeadDJm6UnGpBucf2_W9iAeTA6B4r1Q8Ah5DfQSKFXvKwBTtKfAe9BU9voJ2YBQvGeGs6dkQ-lgemmUeU5e1PpA2zFabcjnb3nyXQ7d7TKFpXQxddfJFY81pkO3W2Ly2O0K1trdNbJgcr_xbT6dfOm-fj_Pec4_o4vz-SV5FnCq_tWf94Lcf_xwt_3U33zZXW-vbno3AJt7g5xLoBypg703-yGM2vNRaaQjR8mcgqANU3sYpBrHIJwOgg-j1GYUHJFfkHfrv6eSfyy-zvYYq_PThMnnpVoYjNRaKA0NffsP-pCXktp2jVKSCS3N0KjLlTrg5G1MIc8FXbujP0aXkw-xza-4pMpIAawJsAqu5FqLD_ZU4hHL2QK1jz3s2sO2Hvaxh9XNYatTG5sOvvy1yn-kN6sUMFs8lFjt_S2jMLR-AgQH_gtZ8JTt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1476258694</pqid></control><display><type>article</type><title>Role of Sulfur in Increasing Guinea Grass Tolerance of Copper Phytotoxicity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gilabel, Amanda Prado ; Nogueirol, Roberta Corrêa ; Garbo, Alessandra Inácio ; Monteiro, Francisco Antonio</creator><creatorcontrib>Gilabel, Amanda Prado ; Nogueirol, Roberta Corrêa ; Garbo, Alessandra Inácio ; Monteiro, Francisco Antonio</creatorcontrib><description>Soil pollution with trace elements is a growing problem with serious environmental impacts and developing strategies to reduce those impacts is a high priority. The objectives of this study were to assess the role of sulfur (S) in reducing the phytotoxic effects of copper (Cu) and the appearance of oxidative stress due to excess Cu in the growth medium and to assess the potential of guinea grass for Cu phytoremediation. The experiment was carried out in a greenhouse, where the forage grass Panicum maximum cv. Tanzânia was grown with a nutrient solution containing combinations of three S concentrations (0.1, 2, and 4 mmol L⁻¹) and four Cu concentrations (0.3, 100, 500, and 1,000 μmol L⁻¹) using a 3 × 4 factorial design in complete randomized blocks with four replicates. The following variables were measured: shoot and root dry mass production, leaf and tiller number, S and Cu concentrations in diagnostic leaves and roots, H₂O₂, lipid peroxidation, and proline levels in the diagnostic leaves. Very high Cu availability (1,000 μmol L⁻¹) that resulted in Cu concentration higher than 60 mg kg⁻¹ in diagnostic leaves caused more than 50 % reduction in shoot and root dry mass production about 30–40 % in the number of leaves and tillers around 20 % increase in lipid peroxidation and more than 10 times increase in proline production. Plants properly fed with S showed mitigation to Cu toxicity. Guinea grass showed promise as an agent in the phytoremediation of Cu-polluted areas.</description><identifier>ISSN: 0049-6979</identifier><identifier>EISSN: 1573-2932</identifier><identifier>DOI: 10.1007/s11270-013-1806-8</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>Amino acids ; Atmospheric carbon dioxide ; Atmospheric Protection/Air Quality Control/Air Pollution ; Climate Change/Climate Change Impacts ; Copper ; culture media ; Earth and Environmental Science ; Environment ; Environmental impact ; Environmental management ; Environmental monitoring ; Environmental studies ; Enzymes ; Experiments ; forage grasses ; Grasses ; greenhouses ; Harvest ; Heavy metals ; Hydrogen peroxide ; Hydrogeology ; Leaves ; Lipid peroxidation ; Lipids ; Metabolism ; Metals ; Nutrient concentrations ; Nutrition ; Oxidative stress ; Panicum maximum ; Peroxidation ; Phytoremediation ; Phytotoxicity ; Proline ; roots ; shoots ; Soil pollution ; Soil Science & Conservation ; Soil sciences ; Sulfur ; Sulfur compounds ; Tillers ; Toxicity ; Trace elements ; Water Quality/Water Pollution</subject><ispartof>Water, air, and soil pollution, 2014, Vol.225 (1), p.1-10, Article 1806</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Springer Science+Business Media Dordrecht 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-9a336103a0c1be9b4fd8e3d78a0d3a62c71f8927b1467ddf5c8f534d689d53aa3</citedby><cites>FETCH-LOGICAL-c412t-9a336103a0c1be9b4fd8e3d78a0d3a62c71f8927b1467ddf5c8f534d689d53aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11270-013-1806-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11270-013-1806-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gilabel, Amanda Prado</creatorcontrib><creatorcontrib>Nogueirol, Roberta Corrêa</creatorcontrib><creatorcontrib>Garbo, Alessandra Inácio</creatorcontrib><creatorcontrib>Monteiro, Francisco Antonio</creatorcontrib><title>Role of Sulfur in Increasing Guinea Grass Tolerance of Copper Phytotoxicity</title><title>Water, air, and soil pollution</title><addtitle>Water Air Soil Pollut</addtitle><description>Soil pollution with trace elements is a growing problem with serious environmental impacts and developing strategies to reduce those impacts is a high priority. The objectives of this study were to assess the role of sulfur (S) in reducing the phytotoxic effects of copper (Cu) and the appearance of oxidative stress due to excess Cu in the growth medium and to assess the potential of guinea grass for Cu phytoremediation. The experiment was carried out in a greenhouse, where the forage grass Panicum maximum cv. Tanzânia was grown with a nutrient solution containing combinations of three S concentrations (0.1, 2, and 4 mmol L⁻¹) and four Cu concentrations (0.3, 100, 500, and 1,000 μmol L⁻¹) using a 3 × 4 factorial design in complete randomized blocks with four replicates. The following variables were measured: shoot and root dry mass production, leaf and tiller number, S and Cu concentrations in diagnostic leaves and roots, H₂O₂, lipid peroxidation, and proline levels in the diagnostic leaves. Very high Cu availability (1,000 μmol L⁻¹) that resulted in Cu concentration higher than 60 mg kg⁻¹ in diagnostic leaves caused more than 50 % reduction in shoot and root dry mass production about 30–40 % in the number of leaves and tillers around 20 % increase in lipid peroxidation and more than 10 times increase in proline production. Plants properly fed with S showed mitigation to Cu toxicity. Guinea grass showed promise as an agent in the phytoremediation of Cu-polluted areas.</description><subject>Amino acids</subject><subject>Atmospheric carbon dioxide</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Copper</subject><subject>culture media</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental impact</subject><subject>Environmental management</subject><subject>Environmental monitoring</subject><subject>Environmental studies</subject><subject>Enzymes</subject><subject>Experiments</subject><subject>forage grasses</subject><subject>Grasses</subject><subject>greenhouses</subject><subject>Harvest</subject><subject>Heavy metals</subject><subject>Hydrogen peroxide</subject><subject>Hydrogeology</subject><subject>Leaves</subject><subject>Lipid peroxidation</subject><subject>Lipids</subject><subject>Metabolism</subject><subject>Metals</subject><subject>Nutrient concentrations</subject><subject>Nutrition</subject><subject>Oxidative stress</subject><subject>Panicum maximum</subject><subject>Peroxidation</subject><subject>Phytoremediation</subject><subject>Phytotoxicity</subject><subject>Proline</subject><subject>roots</subject><subject>shoots</subject><subject>Soil pollution</subject><subject>Soil Science & Conservation</subject><subject>Soil sciences</subject><subject>Sulfur</subject><subject>Sulfur compounds</subject><subject>Tillers</subject><subject>Toxicity</subject><subject>Trace elements</subject><subject>Water Quality/Water Pollution</subject><issn>0049-6979</issn><issn>1573-2932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU2LFDEQQIMoOK7-AE82ePHSayrpfB2XQcfFBcXdPYeadDJm6UnGpBucf2_W9iAeTA6B4r1Q8Ah5DfQSKFXvKwBTtKfAe9BU9voJ2YBQvGeGs6dkQ-lgemmUeU5e1PpA2zFabcjnb3nyXQ7d7TKFpXQxddfJFY81pkO3W2Ly2O0K1trdNbJgcr_xbT6dfOm-fj_Pec4_o4vz-SV5FnCq_tWf94Lcf_xwt_3U33zZXW-vbno3AJt7g5xLoBypg703-yGM2vNRaaQjR8mcgqANU3sYpBrHIJwOgg-j1GYUHJFfkHfrv6eSfyy-zvYYq_PThMnnpVoYjNRaKA0NffsP-pCXktp2jVKSCS3N0KjLlTrg5G1MIc8FXbujP0aXkw-xza-4pMpIAawJsAqu5FqLD_ZU4hHL2QK1jz3s2sO2Hvaxh9XNYatTG5sOvvy1yn-kN6sUMFs8lFjt_S2jMLR-AgQH_gtZ8JTt</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Gilabel, Amanda Prado</creator><creator>Nogueirol, Roberta Corrêa</creator><creator>Garbo, Alessandra Inácio</creator><creator>Monteiro, Francisco Antonio</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>2014</creationdate><title>Role of Sulfur in Increasing Guinea Grass Tolerance of Copper Phytotoxicity</title><author>Gilabel, Amanda Prado ; Nogueirol, Roberta Corrêa ; Garbo, Alessandra Inácio ; Monteiro, Francisco Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-9a336103a0c1be9b4fd8e3d78a0d3a62c71f8927b1467ddf5c8f534d689d53aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino acids</topic><topic>Atmospheric carbon dioxide</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Copper</topic><topic>culture media</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental impact</topic><topic>Environmental management</topic><topic>Environmental monitoring</topic><topic>Environmental studies</topic><topic>Enzymes</topic><topic>Experiments</topic><topic>forage grasses</topic><topic>Grasses</topic><topic>greenhouses</topic><topic>Harvest</topic><topic>Heavy metals</topic><topic>Hydrogen peroxide</topic><topic>Hydrogeology</topic><topic>Leaves</topic><topic>Lipid peroxidation</topic><topic>Lipids</topic><topic>Metabolism</topic><topic>Metals</topic><topic>Nutrient concentrations</topic><topic>Nutrition</topic><topic>Oxidative stress</topic><topic>Panicum maximum</topic><topic>Peroxidation</topic><topic>Phytoremediation</topic><topic>Phytotoxicity</topic><topic>Proline</topic><topic>roots</topic><topic>shoots</topic><topic>Soil pollution</topic><topic>Soil Science & Conservation</topic><topic>Soil sciences</topic><topic>Sulfur</topic><topic>Sulfur compounds</topic><topic>Tillers</topic><topic>Toxicity</topic><topic>Trace elements</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilabel, Amanda Prado</creatorcontrib><creatorcontrib>Nogueirol, Roberta Corrêa</creatorcontrib><creatorcontrib>Garbo, Alessandra Inácio</creatorcontrib><creatorcontrib>Monteiro, Francisco Antonio</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Water, air, and soil pollution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilabel, Amanda Prado</au><au>Nogueirol, Roberta Corrêa</au><au>Garbo, Alessandra Inácio</au><au>Monteiro, Francisco Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Sulfur in Increasing Guinea Grass Tolerance of Copper Phytotoxicity</atitle><jtitle>Water, air, and soil pollution</jtitle><stitle>Water Air Soil Pollut</stitle><date>2014</date><risdate>2014</risdate><volume>225</volume><issue>1</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><artnum>1806</artnum><issn>0049-6979</issn><eissn>1573-2932</eissn><abstract>Soil pollution with trace elements is a growing problem with serious environmental impacts and developing strategies to reduce those impacts is a high priority. The objectives of this study were to assess the role of sulfur (S) in reducing the phytotoxic effects of copper (Cu) and the appearance of oxidative stress due to excess Cu in the growth medium and to assess the potential of guinea grass for Cu phytoremediation. The experiment was carried out in a greenhouse, where the forage grass Panicum maximum cv. Tanzânia was grown with a nutrient solution containing combinations of three S concentrations (0.1, 2, and 4 mmol L⁻¹) and four Cu concentrations (0.3, 100, 500, and 1,000 μmol L⁻¹) using a 3 × 4 factorial design in complete randomized blocks with four replicates. The following variables were measured: shoot and root dry mass production, leaf and tiller number, S and Cu concentrations in diagnostic leaves and roots, H₂O₂, lipid peroxidation, and proline levels in the diagnostic leaves. Very high Cu availability (1,000 μmol L⁻¹) that resulted in Cu concentration higher than 60 mg kg⁻¹ in diagnostic leaves caused more than 50 % reduction in shoot and root dry mass production about 30–40 % in the number of leaves and tillers around 20 % increase in lipid peroxidation and more than 10 times increase in proline production. Plants properly fed with S showed mitigation to Cu toxicity. Guinea grass showed promise as an agent in the phytoremediation of Cu-polluted areas.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><doi>10.1007/s11270-013-1806-8</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0049-6979 |
ispartof | Water, air, and soil pollution, 2014, Vol.225 (1), p.1-10, Article 1806 |
issn | 0049-6979 1573-2932 |
language | eng |
recordid | cdi_proquest_miscellaneous_1496885781 |
source | SpringerLink Journals - AutoHoldings |
subjects | Amino acids Atmospheric carbon dioxide Atmospheric Protection/Air Quality Control/Air Pollution Climate Change/Climate Change Impacts Copper culture media Earth and Environmental Science Environment Environmental impact Environmental management Environmental monitoring Environmental studies Enzymes Experiments forage grasses Grasses greenhouses Harvest Heavy metals Hydrogen peroxide Hydrogeology Leaves Lipid peroxidation Lipids Metabolism Metals Nutrient concentrations Nutrition Oxidative stress Panicum maximum Peroxidation Phytoremediation Phytotoxicity Proline roots shoots Soil pollution Soil Science & Conservation Soil sciences Sulfur Sulfur compounds Tillers Toxicity Trace elements Water Quality/Water Pollution |
title | Role of Sulfur in Increasing Guinea Grass Tolerance of Copper Phytotoxicity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Sulfur%20in%20Increasing%20Guinea%20Grass%20Tolerance%20of%20Copper%20Phytotoxicity&rft.jtitle=Water,%20air,%20and%20soil%20pollution&rft.au=Gilabel,%20Amanda%20Prado&rft.date=2014&rft.volume=225&rft.issue=1&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.artnum=1806&rft.issn=0049-6979&rft.eissn=1573-2932&rft_id=info:doi/10.1007/s11270-013-1806-8&rft_dat=%3Cgale_proqu%3EA360796512%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1476258694&rft_id=info:pmid/&rft_galeid=A360796512&rfr_iscdi=true |