Evaporation rates across a convective air boundary layer are dominated by diffusion
Key Points The contributions of diffusion and advection to evaporative flux are quantified Diffusion dominates evaporation flux from partially wet surfaces Surface water content‐dependent evaporative resistance expression is developed The relative contributions of advection and diffusion to isotherm...
Gespeichert in:
Veröffentlicht in: | Water resources research 2013-03, Vol.49 (3), p.1602-1610 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1610 |
---|---|
container_issue | 3 |
container_start_page | 1602 |
container_title | Water resources research |
container_volume | 49 |
creator | Haghighi, E. Shahraeeni, E. Lehmann, P. Or, D. |
description | Key Points
The contributions of diffusion and advection to evaporative flux are quantified
Diffusion dominates evaporation flux from partially wet surfaces
Surface water content‐dependent evaporative resistance expression is developed
The relative contributions of advection and diffusion to isothermal mass transfer from drying porous surfaces across a constant air boundary layer have been quantified. Analysis has shown that neglecting diffusion in longitudinal direction (often justified by large Peclet number) may lead to underestimation of evaporative mass losses from porous surfaces. Considering diffusion only from individual pores across a constant boundary layer accounts for most of the evaporation rates predicted by the full advection‐diffusion equation (ADE). The apparent decoupling between diffusion and advection, and the relatively small role of advection in flux generation (other than defining boundary layer thickness) greatly simplifies analytical description of drying surfaces. Consequently, evaporation rates from porous surfaces may be represented by superposition of readily‐available analytical diffusion solutions from discrete pores considering different patterns and spacing between surface pores. Results have been used to formulate a generalized top boundary condition for effective resistance to evaporation linking soil type, surface water content and boundary layer characteristic into a simple and physically based analytical expression. |
doi_str_mv | 10.1002/wrcr.20166 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1496884749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1496884749</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5386-73a7d59ab80ceec27eaf4712f21341d1ad052b01dd08f9b5e3744862df363f7e3</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKsbvyDgRoSpySSTzCylaBWKQlW6DJnJC0Snk5p0Wvv3RqsuXLi6m3Mv7x2ETikZUULyy01owignVIg9NKAV55msJNtHA0I4yyir5CE6ivGFEMoLIQfo8Xqtlz7olfMdTgER6yb4mAI3vltDs3JrwNoFXPu-Mzpscau3ELAOgI1fuC6VDK632Dhr-5h2jtGB1W2Ek-8coueb66fxbTZ9mNyNr6aZLlgpMsm0NEWl65I0AE0uQVsuaW5zyjg1VBtS5DWhxpDSVnUBTHJeitxYJpiVwIbofLe7DP6th7hSCxcbaFvdge-jorwSZcklrxJ69gd98X3o0nWKCp6TkqbxRF3sqC8DAaxaBrdILytK1Kdf9elXfflNMN3BG9fC9h9SzWfj2U8n23VcXMH7b0eHVyUkk4Wa30_U9F6Q2fx2pjj7AMQIjLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642081374</pqid></control><display><type>article</type><title>Evaporation rates across a convective air boundary layer are dominated by diffusion</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Haghighi, E. ; Shahraeeni, E. ; Lehmann, P. ; Or, D.</creator><creatorcontrib>Haghighi, E. ; Shahraeeni, E. ; Lehmann, P. ; Or, D.</creatorcontrib><description>Key Points
The contributions of diffusion and advection to evaporative flux are quantified
Diffusion dominates evaporation flux from partially wet surfaces
Surface water content‐dependent evaporative resistance expression is developed
The relative contributions of advection and diffusion to isothermal mass transfer from drying porous surfaces across a constant air boundary layer have been quantified. Analysis has shown that neglecting diffusion in longitudinal direction (often justified by large Peclet number) may lead to underestimation of evaporative mass losses from porous surfaces. Considering diffusion only from individual pores across a constant boundary layer accounts for most of the evaporation rates predicted by the full advection‐diffusion equation (ADE). The apparent decoupling between diffusion and advection, and the relatively small role of advection in flux generation (other than defining boundary layer thickness) greatly simplifies analytical description of drying surfaces. Consequently, evaporation rates from porous surfaces may be represented by superposition of readily‐available analytical diffusion solutions from discrete pores considering different patterns and spacing between surface pores. Results have been used to formulate a generalized top boundary condition for effective resistance to evaporation linking soil type, surface water content and boundary layer characteristic into a simple and physically based analytical expression.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/wrcr.20166</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Advection ; Boundary conditions ; Boundary layer ; Boundary layers ; Diffusion ; Drying ; Evaporation ; Evaporation rate ; evaporative resistance ; Mass transfer ; Meteorology ; Pores ; porous media ; Soil types ; Surface water ; Water content</subject><ispartof>Water resources research, 2013-03, Vol.49 (3), p.1602-1610</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5386-73a7d59ab80ceec27eaf4712f21341d1ad052b01dd08f9b5e3744862df363f7e3</citedby><cites>FETCH-LOGICAL-a5386-73a7d59ab80ceec27eaf4712f21341d1ad052b01dd08f9b5e3744862df363f7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwrcr.20166$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwrcr.20166$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11514,27924,27925,45574,45575,46468,46892</link.rule.ids></links><search><creatorcontrib>Haghighi, E.</creatorcontrib><creatorcontrib>Shahraeeni, E.</creatorcontrib><creatorcontrib>Lehmann, P.</creatorcontrib><creatorcontrib>Or, D.</creatorcontrib><title>Evaporation rates across a convective air boundary layer are dominated by diffusion</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>Key Points
The contributions of diffusion and advection to evaporative flux are quantified
Diffusion dominates evaporation flux from partially wet surfaces
Surface water content‐dependent evaporative resistance expression is developed
The relative contributions of advection and diffusion to isothermal mass transfer from drying porous surfaces across a constant air boundary layer have been quantified. Analysis has shown that neglecting diffusion in longitudinal direction (often justified by large Peclet number) may lead to underestimation of evaporative mass losses from porous surfaces. Considering diffusion only from individual pores across a constant boundary layer accounts for most of the evaporation rates predicted by the full advection‐diffusion equation (ADE). The apparent decoupling between diffusion and advection, and the relatively small role of advection in flux generation (other than defining boundary layer thickness) greatly simplifies analytical description of drying surfaces. Consequently, evaporation rates from porous surfaces may be represented by superposition of readily‐available analytical diffusion solutions from discrete pores considering different patterns and spacing between surface pores. Results have been used to formulate a generalized top boundary condition for effective resistance to evaporation linking soil type, surface water content and boundary layer characteristic into a simple and physically based analytical expression.</description><subject>Advection</subject><subject>Boundary conditions</subject><subject>Boundary layer</subject><subject>Boundary layers</subject><subject>Diffusion</subject><subject>Drying</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>evaporative resistance</subject><subject>Mass transfer</subject><subject>Meteorology</subject><subject>Pores</subject><subject>porous media</subject><subject>Soil types</subject><subject>Surface water</subject><subject>Water content</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEURYMoWKsbvyDgRoSpySSTzCylaBWKQlW6DJnJC0Snk5p0Wvv3RqsuXLi6m3Mv7x2ETikZUULyy01owignVIg9NKAV55msJNtHA0I4yyir5CE6ivGFEMoLIQfo8Xqtlz7olfMdTgER6yb4mAI3vltDs3JrwNoFXPu-Mzpscau3ELAOgI1fuC6VDK632Dhr-5h2jtGB1W2Ek-8coueb66fxbTZ9mNyNr6aZLlgpMsm0NEWl65I0AE0uQVsuaW5zyjg1VBtS5DWhxpDSVnUBTHJeitxYJpiVwIbofLe7DP6th7hSCxcbaFvdge-jorwSZcklrxJ69gd98X3o0nWKCp6TkqbxRF3sqC8DAaxaBrdILytK1Kdf9elXfflNMN3BG9fC9h9SzWfj2U8n23VcXMH7b0eHVyUkk4Wa30_U9F6Q2fx2pjj7AMQIjLI</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Haghighi, E.</creator><creator>Shahraeeni, E.</creator><creator>Lehmann, P.</creator><creator>Or, D.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201303</creationdate><title>Evaporation rates across a convective air boundary layer are dominated by diffusion</title><author>Haghighi, E. ; Shahraeeni, E. ; Lehmann, P. ; Or, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5386-73a7d59ab80ceec27eaf4712f21341d1ad052b01dd08f9b5e3744862df363f7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Advection</topic><topic>Boundary conditions</topic><topic>Boundary layer</topic><topic>Boundary layers</topic><topic>Diffusion</topic><topic>Drying</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>evaporative resistance</topic><topic>Mass transfer</topic><topic>Meteorology</topic><topic>Pores</topic><topic>porous media</topic><topic>Soil types</topic><topic>Surface water</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haghighi, E.</creatorcontrib><creatorcontrib>Shahraeeni, E.</creatorcontrib><creatorcontrib>Lehmann, P.</creatorcontrib><creatorcontrib>Or, D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haghighi, E.</au><au>Shahraeeni, E.</au><au>Lehmann, P.</au><au>Or, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaporation rates across a convective air boundary layer are dominated by diffusion</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2013-03</date><risdate>2013</risdate><volume>49</volume><issue>3</issue><spage>1602</spage><epage>1610</epage><pages>1602-1610</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Key Points
The contributions of diffusion and advection to evaporative flux are quantified
Diffusion dominates evaporation flux from partially wet surfaces
Surface water content‐dependent evaporative resistance expression is developed
The relative contributions of advection and diffusion to isothermal mass transfer from drying porous surfaces across a constant air boundary layer have been quantified. Analysis has shown that neglecting diffusion in longitudinal direction (often justified by large Peclet number) may lead to underestimation of evaporative mass losses from porous surfaces. Considering diffusion only from individual pores across a constant boundary layer accounts for most of the evaporation rates predicted by the full advection‐diffusion equation (ADE). The apparent decoupling between diffusion and advection, and the relatively small role of advection in flux generation (other than defining boundary layer thickness) greatly simplifies analytical description of drying surfaces. Consequently, evaporation rates from porous surfaces may be represented by superposition of readily‐available analytical diffusion solutions from discrete pores considering different patterns and spacing between surface pores. Results have been used to formulate a generalized top boundary condition for effective resistance to evaporation linking soil type, surface water content and boundary layer characteristic into a simple and physically based analytical expression.</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/wrcr.20166</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2013-03, Vol.49 (3), p.1602-1610 |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_proquest_miscellaneous_1496884749 |
source | Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals |
subjects | Advection Boundary conditions Boundary layer Boundary layers Diffusion Drying Evaporation Evaporation rate evaporative resistance Mass transfer Meteorology Pores porous media Soil types Surface water Water content |
title | Evaporation rates across a convective air boundary layer are dominated by diffusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaporation%20rates%20across%20a%20convective%20air%20boundary%20layer%20are%20dominated%20by%20diffusion&rft.jtitle=Water%20resources%20research&rft.au=Haghighi,%20E.&rft.date=2013-03&rft.volume=49&rft.issue=3&rft.spage=1602&rft.epage=1610&rft.pages=1602-1610&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/wrcr.20166&rft_dat=%3Cproquest_cross%3E1496884749%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642081374&rft_id=info:pmid/&rfr_iscdi=true |