Electrophysiological Effects of Kainic Acid on Vasopressin-Enhanced Green Fluorescent Protein and Oxytocin-Monomeric Red Fluorescent Protein 1 Neurones Isolated from the Supraoptic Nucleus in Transgenic Rats

The supraoptic nucleus (SON) contains two types of magnocellular neurosecretory cells: arginine vasopressin (AVP)‐producing and oxytocin (OXT)‐producing cells. We recently generated and characterised two transgenic rat lines: one expressing an AVP‐enhanced green fluorescent protein (eGFP) and the ot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroendocrinology 2014-01, Vol.26 (1), p.43-51
Hauptverfasser: Ohkubo, J., Ohbuchi, T., Yoshimura, M., Maruyama, T., Ishikura, T., Matsuura, T., Suzuki, H., Ueta, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue 1
container_start_page 43
container_title Journal of neuroendocrinology
container_volume 26
creator Ohkubo, J.
Ohbuchi, T.
Yoshimura, M.
Maruyama, T.
Ishikura, T.
Matsuura, T.
Suzuki, H.
Ueta, Y.
description The supraoptic nucleus (SON) contains two types of magnocellular neurosecretory cells: arginine vasopressin (AVP)‐producing and oxytocin (OXT)‐producing cells. We recently generated and characterised two transgenic rat lines: one expressing an AVP‐enhanced green fluorescent protein (eGFP) and the other expressing an OXT‐monomeric red fluorescent protein 1 (mRFP1). These transgenic rats enable the visualisation of AVP or OXT neurones in the SON. In the present study, we compared the electrophysiological responses of AVP‐eGFP and OXT‐mRFP1 neurones to glutamic acid in SON primary cultures. Glutamate mediates fast synaptic transmission through three classes of ionotrophic receptors: the NMDA, AMPA and kainate receptors. We investigated the contributions of the three classes of ionotrophic receptors in glutamate‐induced currents. Three different antagonists were used, each predominantly selective for one of the classes of ionotrophic receptor. Next, we focused on the kainate receptors (KARs). We examined the electrophysiological effects of kainic acid (KA) on AVP‐eGFP and OXT‐mRFP1 neurones. In current clamp mode, KA induced depolarisation and increased firing rates. These KA‐induced responses were inhibited by the non‐NMDA ionotrophic receptor antagonist 6‐cyano‐7‐nitroquinoxaline‐2,3(1H4H)‐dione in both AVP‐eGFP and OXT‐mRFP1 neurones. In voltage clamp mode, the application of KA evoked inward currents in a dose‐dependent manner. The KA‐induced currents were significantly larger in OXT‐mRFP1 neurones than in AVP‐eGFP neurones. This significant difference in KA‐induced currents was abolished by the GluK1‐containing KAR antagonist UBP302. At high concentrations (250–500 μm), the specific GluK1‐containing KAR agonist (RS)‐2‐amino‐3‐(3‐hydroxy‐5‐tert‐butylisoxazol‐4‐yl) propanoic acid (ATPA) induced significantly larger currents in OXT‐mRFP1 neurones than in AVP‐eGFP neurones. Furthermore, the difference between the AVP‐eGFP and OXT‐mRFP1 neurones in the ATPA currents was approximately equal to the difference in the KA currents. These findings suggest that the GluK1‐containing KARs may be more highly expressed in OXT neurones than in AVP neurones. These results may provide new insight into the physiology and synaptic plasticity of SON neurones.
doi_str_mv 10.1111/jne.12128
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1496883792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1496883792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4628-dfe4917033fc1fbf9cf9a4e291b80d2d8ee0ee17d16c97090b2add02971b88993</originalsourceid><addsrcrecordid>eNp1kctu1DAUhiMEokNhwQsgL2GR1pfcvKyqdGjpTNFQCmJjeZzjjktiB9tRO0_JK-EybVfgzZF8vu-XrT_L3hJ8QNI5vLFwQCihzbNsRlhV5rSh1fNshnnJ8obwYi97FcINxqQuGX6Z7dGCFaQs-Sz73fagonfjZhuM6921UbJHrdbpNiCn0SdprFHoSJkOOYuuZHCjhxCMzVu7kVZBh-YewKKTfnJpo8BG9Nm7CMYiaTt0cbeNTiV-4awbwKe0VZL-hRO0hMk7CwGdBtfLmDjt3YDiBtCXafTSjTH5y0n1MAWUlEsvbbiG-zeuZAyvsxda9gHePMz97OtJe3n8MT-_mJ8eH53nqqhok3caCk5qzJhWRK81V5rLAign6wZ3tGsAMACpO1IpXmOO11R2Haa8TkDDOdvP3u9yR-9-TRCiGEz6S99LC24KghS8ahpWc5rQDztUeReCBy1Gbwbpt4Jgcd-fSP2Jv_0l9t1D7LQeoHsiHwtLwOEOuDU9bP-fJM6W7WNkvjNMiHD3ZEj_U1Q1q0vxbTkXi-_8x4I3V2LF_gDq1rjh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1496883792</pqid></control><display><type>article</type><title>Electrophysiological Effects of Kainic Acid on Vasopressin-Enhanced Green Fluorescent Protein and Oxytocin-Monomeric Red Fluorescent Protein 1 Neurones Isolated from the Supraoptic Nucleus in Transgenic Rats</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Ohkubo, J. ; Ohbuchi, T. ; Yoshimura, M. ; Maruyama, T. ; Ishikura, T. ; Matsuura, T. ; Suzuki, H. ; Ueta, Y.</creator><creatorcontrib>Ohkubo, J. ; Ohbuchi, T. ; Yoshimura, M. ; Maruyama, T. ; Ishikura, T. ; Matsuura, T. ; Suzuki, H. ; Ueta, Y.</creatorcontrib><description>The supraoptic nucleus (SON) contains two types of magnocellular neurosecretory cells: arginine vasopressin (AVP)‐producing and oxytocin (OXT)‐producing cells. We recently generated and characterised two transgenic rat lines: one expressing an AVP‐enhanced green fluorescent protein (eGFP) and the other expressing an OXT‐monomeric red fluorescent protein 1 (mRFP1). These transgenic rats enable the visualisation of AVP or OXT neurones in the SON. In the present study, we compared the electrophysiological responses of AVP‐eGFP and OXT‐mRFP1 neurones to glutamic acid in SON primary cultures. Glutamate mediates fast synaptic transmission through three classes of ionotrophic receptors: the NMDA, AMPA and kainate receptors. We investigated the contributions of the three classes of ionotrophic receptors in glutamate‐induced currents. Three different antagonists were used, each predominantly selective for one of the classes of ionotrophic receptor. Next, we focused on the kainate receptors (KARs). We examined the electrophysiological effects of kainic acid (KA) on AVP‐eGFP and OXT‐mRFP1 neurones. In current clamp mode, KA induced depolarisation and increased firing rates. These KA‐induced responses were inhibited by the non‐NMDA ionotrophic receptor antagonist 6‐cyano‐7‐nitroquinoxaline‐2,3(1H4H)‐dione in both AVP‐eGFP and OXT‐mRFP1 neurones. In voltage clamp mode, the application of KA evoked inward currents in a dose‐dependent manner. The KA‐induced currents were significantly larger in OXT‐mRFP1 neurones than in AVP‐eGFP neurones. This significant difference in KA‐induced currents was abolished by the GluK1‐containing KAR antagonist UBP302. At high concentrations (250–500 μm), the specific GluK1‐containing KAR agonist (RS)‐2‐amino‐3‐(3‐hydroxy‐5‐tert‐butylisoxazol‐4‐yl) propanoic acid (ATPA) induced significantly larger currents in OXT‐mRFP1 neurones than in AVP‐eGFP neurones. Furthermore, the difference between the AVP‐eGFP and OXT‐mRFP1 neurones in the ATPA currents was approximately equal to the difference in the KA currents. These findings suggest that the GluK1‐containing KARs may be more highly expressed in OXT neurones than in AVP neurones. These results may provide new insight into the physiology and synaptic plasticity of SON neurones.</description><identifier>ISSN: 0953-8194</identifier><identifier>EISSN: 1365-2826</identifier><identifier>DOI: 10.1111/jne.12128</identifier><identifier>PMID: 24341559</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology ; Action Potentials - drug effects ; Action Potentials - physiology ; Alanine - analogs &amp; derivatives ; Alanine - pharmacology ; Animals ; Arginine Vasopressin - metabolism ; Cell Separation ; Electric Conductivity ; Electrophysiology ; Excitatory Amino Acid Antagonists - pharmacology ; fluorescent protein ; Glutamic Acid - pharmacology ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Isoxazoles - pharmacology ; kainate receptors ; Kainic Acid - pharmacology ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Neurons - drug effects ; Neurons - metabolism ; oxytocin ; Oxytocin - metabolism ; Patch-Clamp Techniques ; Primary Cell Culture ; Propionates - pharmacology ; Rats ; Rats, Transgenic ; Receptors, Ionotropic Glutamate - agonists ; Receptors, Ionotropic Glutamate - antagonists &amp; inhibitors ; Receptors, Ionotropic Glutamate - physiology ; Receptors, Kainic Acid - agonists ; Receptors, Kainic Acid - antagonists &amp; inhibitors ; Receptors, Kainic Acid - physiology ; Red Fluorescent Protein ; SON ; Supraoptic Nucleus - cytology ; Supraoptic Nucleus - drug effects ; Supraoptic Nucleus - physiology ; Thymine - analogs &amp; derivatives ; Thymine - pharmacology ; vasopressin</subject><ispartof>Journal of neuroendocrinology, 2014-01, Vol.26 (1), p.43-51</ispartof><rights>2014 British Society for Neuroendocrinology</rights><rights>2014 British Society for Neuroendocrinology.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4628-dfe4917033fc1fbf9cf9a4e291b80d2d8ee0ee17d16c97090b2add02971b88993</citedby><cites>FETCH-LOGICAL-c4628-dfe4917033fc1fbf9cf9a4e291b80d2d8ee0ee17d16c97090b2add02971b88993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjne.12128$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjne.12128$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24341559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohkubo, J.</creatorcontrib><creatorcontrib>Ohbuchi, T.</creatorcontrib><creatorcontrib>Yoshimura, M.</creatorcontrib><creatorcontrib>Maruyama, T.</creatorcontrib><creatorcontrib>Ishikura, T.</creatorcontrib><creatorcontrib>Matsuura, T.</creatorcontrib><creatorcontrib>Suzuki, H.</creatorcontrib><creatorcontrib>Ueta, Y.</creatorcontrib><title>Electrophysiological Effects of Kainic Acid on Vasopressin-Enhanced Green Fluorescent Protein and Oxytocin-Monomeric Red Fluorescent Protein 1 Neurones Isolated from the Supraoptic Nucleus in Transgenic Rats</title><title>Journal of neuroendocrinology</title><addtitle>J Neuroendocrinol</addtitle><description>The supraoptic nucleus (SON) contains two types of magnocellular neurosecretory cells: arginine vasopressin (AVP)‐producing and oxytocin (OXT)‐producing cells. We recently generated and characterised two transgenic rat lines: one expressing an AVP‐enhanced green fluorescent protein (eGFP) and the other expressing an OXT‐monomeric red fluorescent protein 1 (mRFP1). These transgenic rats enable the visualisation of AVP or OXT neurones in the SON. In the present study, we compared the electrophysiological responses of AVP‐eGFP and OXT‐mRFP1 neurones to glutamic acid in SON primary cultures. Glutamate mediates fast synaptic transmission through three classes of ionotrophic receptors: the NMDA, AMPA and kainate receptors. We investigated the contributions of the three classes of ionotrophic receptors in glutamate‐induced currents. Three different antagonists were used, each predominantly selective for one of the classes of ionotrophic receptor. Next, we focused on the kainate receptors (KARs). We examined the electrophysiological effects of kainic acid (KA) on AVP‐eGFP and OXT‐mRFP1 neurones. In current clamp mode, KA induced depolarisation and increased firing rates. These KA‐induced responses were inhibited by the non‐NMDA ionotrophic receptor antagonist 6‐cyano‐7‐nitroquinoxaline‐2,3(1H4H)‐dione in both AVP‐eGFP and OXT‐mRFP1 neurones. In voltage clamp mode, the application of KA evoked inward currents in a dose‐dependent manner. The KA‐induced currents were significantly larger in OXT‐mRFP1 neurones than in AVP‐eGFP neurones. This significant difference in KA‐induced currents was abolished by the GluK1‐containing KAR antagonist UBP302. At high concentrations (250–500 μm), the specific GluK1‐containing KAR agonist (RS)‐2‐amino‐3‐(3‐hydroxy‐5‐tert‐butylisoxazol‐4‐yl) propanoic acid (ATPA) induced significantly larger currents in OXT‐mRFP1 neurones than in AVP‐eGFP neurones. Furthermore, the difference between the AVP‐eGFP and OXT‐mRFP1 neurones in the ATPA currents was approximately equal to the difference in the KA currents. These findings suggest that the GluK1‐containing KARs may be more highly expressed in OXT neurones than in AVP neurones. These results may provide new insight into the physiology and synaptic plasticity of SON neurones.</description><subject>6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology</subject><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Alanine - analogs &amp; derivatives</subject><subject>Alanine - pharmacology</subject><subject>Animals</subject><subject>Arginine Vasopressin - metabolism</subject><subject>Cell Separation</subject><subject>Electric Conductivity</subject><subject>Electrophysiology</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>fluorescent protein</subject><subject>Glutamic Acid - pharmacology</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Isoxazoles - pharmacology</subject><subject>kainate receptors</subject><subject>Kainic Acid - pharmacology</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>oxytocin</subject><subject>Oxytocin - metabolism</subject><subject>Patch-Clamp Techniques</subject><subject>Primary Cell Culture</subject><subject>Propionates - pharmacology</subject><subject>Rats</subject><subject>Rats, Transgenic</subject><subject>Receptors, Ionotropic Glutamate - agonists</subject><subject>Receptors, Ionotropic Glutamate - antagonists &amp; inhibitors</subject><subject>Receptors, Ionotropic Glutamate - physiology</subject><subject>Receptors, Kainic Acid - agonists</subject><subject>Receptors, Kainic Acid - antagonists &amp; inhibitors</subject><subject>Receptors, Kainic Acid - physiology</subject><subject>Red Fluorescent Protein</subject><subject>SON</subject><subject>Supraoptic Nucleus - cytology</subject><subject>Supraoptic Nucleus - drug effects</subject><subject>Supraoptic Nucleus - physiology</subject><subject>Thymine - analogs &amp; derivatives</subject><subject>Thymine - pharmacology</subject><subject>vasopressin</subject><issn>0953-8194</issn><issn>1365-2826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctu1DAUhiMEokNhwQsgL2GR1pfcvKyqdGjpTNFQCmJjeZzjjktiB9tRO0_JK-EybVfgzZF8vu-XrT_L3hJ8QNI5vLFwQCihzbNsRlhV5rSh1fNshnnJ8obwYi97FcINxqQuGX6Z7dGCFaQs-Sz73fagonfjZhuM6921UbJHrdbpNiCn0SdprFHoSJkOOYuuZHCjhxCMzVu7kVZBh-YewKKTfnJpo8BG9Nm7CMYiaTt0cbeNTiV-4awbwKe0VZL-hRO0hMk7CwGdBtfLmDjt3YDiBtCXafTSjTH5y0n1MAWUlEsvbbiG-zeuZAyvsxda9gHePMz97OtJe3n8MT-_mJ8eH53nqqhok3caCk5qzJhWRK81V5rLAign6wZ3tGsAMACpO1IpXmOO11R2Haa8TkDDOdvP3u9yR-9-TRCiGEz6S99LC24KghS8ahpWc5rQDztUeReCBy1Gbwbpt4Jgcd-fSP2Jv_0l9t1D7LQeoHsiHwtLwOEOuDU9bP-fJM6W7WNkvjNMiHD3ZEj_U1Q1q0vxbTkXi-_8x4I3V2LF_gDq1rjh</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Ohkubo, J.</creator><creator>Ohbuchi, T.</creator><creator>Yoshimura, M.</creator><creator>Maruyama, T.</creator><creator>Ishikura, T.</creator><creator>Matsuura, T.</creator><creator>Suzuki, H.</creator><creator>Ueta, Y.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201401</creationdate><title>Electrophysiological Effects of Kainic Acid on Vasopressin-Enhanced Green Fluorescent Protein and Oxytocin-Monomeric Red Fluorescent Protein 1 Neurones Isolated from the Supraoptic Nucleus in Transgenic Rats</title><author>Ohkubo, J. ; Ohbuchi, T. ; Yoshimura, M. ; Maruyama, T. ; Ishikura, T. ; Matsuura, T. ; Suzuki, H. ; Ueta, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4628-dfe4917033fc1fbf9cf9a4e291b80d2d8ee0ee17d16c97090b2add02971b88993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology</topic><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Alanine - analogs &amp; derivatives</topic><topic>Alanine - pharmacology</topic><topic>Animals</topic><topic>Arginine Vasopressin - metabolism</topic><topic>Cell Separation</topic><topic>Electric Conductivity</topic><topic>Electrophysiology</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>fluorescent protein</topic><topic>Glutamic Acid - pharmacology</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Isoxazoles - pharmacology</topic><topic>kainate receptors</topic><topic>Kainic Acid - pharmacology</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>oxytocin</topic><topic>Oxytocin - metabolism</topic><topic>Patch-Clamp Techniques</topic><topic>Primary Cell Culture</topic><topic>Propionates - pharmacology</topic><topic>Rats</topic><topic>Rats, Transgenic</topic><topic>Receptors, Ionotropic Glutamate - agonists</topic><topic>Receptors, Ionotropic Glutamate - antagonists &amp; inhibitors</topic><topic>Receptors, Ionotropic Glutamate - physiology</topic><topic>Receptors, Kainic Acid - agonists</topic><topic>Receptors, Kainic Acid - antagonists &amp; inhibitors</topic><topic>Receptors, Kainic Acid - physiology</topic><topic>Red Fluorescent Protein</topic><topic>SON</topic><topic>Supraoptic Nucleus - cytology</topic><topic>Supraoptic Nucleus - drug effects</topic><topic>Supraoptic Nucleus - physiology</topic><topic>Thymine - analogs &amp; derivatives</topic><topic>Thymine - pharmacology</topic><topic>vasopressin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohkubo, J.</creatorcontrib><creatorcontrib>Ohbuchi, T.</creatorcontrib><creatorcontrib>Yoshimura, M.</creatorcontrib><creatorcontrib>Maruyama, T.</creatorcontrib><creatorcontrib>Ishikura, T.</creatorcontrib><creatorcontrib>Matsuura, T.</creatorcontrib><creatorcontrib>Suzuki, H.</creatorcontrib><creatorcontrib>Ueta, Y.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of neuroendocrinology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohkubo, J.</au><au>Ohbuchi, T.</au><au>Yoshimura, M.</au><au>Maruyama, T.</au><au>Ishikura, T.</au><au>Matsuura, T.</au><au>Suzuki, H.</au><au>Ueta, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrophysiological Effects of Kainic Acid on Vasopressin-Enhanced Green Fluorescent Protein and Oxytocin-Monomeric Red Fluorescent Protein 1 Neurones Isolated from the Supraoptic Nucleus in Transgenic Rats</atitle><jtitle>Journal of neuroendocrinology</jtitle><addtitle>J Neuroendocrinol</addtitle><date>2014-01</date><risdate>2014</risdate><volume>26</volume><issue>1</issue><spage>43</spage><epage>51</epage><pages>43-51</pages><issn>0953-8194</issn><eissn>1365-2826</eissn><abstract>The supraoptic nucleus (SON) contains two types of magnocellular neurosecretory cells: arginine vasopressin (AVP)‐producing and oxytocin (OXT)‐producing cells. We recently generated and characterised two transgenic rat lines: one expressing an AVP‐enhanced green fluorescent protein (eGFP) and the other expressing an OXT‐monomeric red fluorescent protein 1 (mRFP1). These transgenic rats enable the visualisation of AVP or OXT neurones in the SON. In the present study, we compared the electrophysiological responses of AVP‐eGFP and OXT‐mRFP1 neurones to glutamic acid in SON primary cultures. Glutamate mediates fast synaptic transmission through three classes of ionotrophic receptors: the NMDA, AMPA and kainate receptors. We investigated the contributions of the three classes of ionotrophic receptors in glutamate‐induced currents. Three different antagonists were used, each predominantly selective for one of the classes of ionotrophic receptor. Next, we focused on the kainate receptors (KARs). We examined the electrophysiological effects of kainic acid (KA) on AVP‐eGFP and OXT‐mRFP1 neurones. In current clamp mode, KA induced depolarisation and increased firing rates. These KA‐induced responses were inhibited by the non‐NMDA ionotrophic receptor antagonist 6‐cyano‐7‐nitroquinoxaline‐2,3(1H4H)‐dione in both AVP‐eGFP and OXT‐mRFP1 neurones. In voltage clamp mode, the application of KA evoked inward currents in a dose‐dependent manner. The KA‐induced currents were significantly larger in OXT‐mRFP1 neurones than in AVP‐eGFP neurones. This significant difference in KA‐induced currents was abolished by the GluK1‐containing KAR antagonist UBP302. At high concentrations (250–500 μm), the specific GluK1‐containing KAR agonist (RS)‐2‐amino‐3‐(3‐hydroxy‐5‐tert‐butylisoxazol‐4‐yl) propanoic acid (ATPA) induced significantly larger currents in OXT‐mRFP1 neurones than in AVP‐eGFP neurones. Furthermore, the difference between the AVP‐eGFP and OXT‐mRFP1 neurones in the ATPA currents was approximately equal to the difference in the KA currents. These findings suggest that the GluK1‐containing KARs may be more highly expressed in OXT neurones than in AVP neurones. These results may provide new insight into the physiology and synaptic plasticity of SON neurones.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24341559</pmid><doi>10.1111/jne.12128</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-8194
ispartof Journal of neuroendocrinology, 2014-01, Vol.26 (1), p.43-51
issn 0953-8194
1365-2826
language eng
recordid cdi_proquest_miscellaneous_1496883792
source MEDLINE; Access via Wiley Online Library
subjects 6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology
Action Potentials - drug effects
Action Potentials - physiology
Alanine - analogs & derivatives
Alanine - pharmacology
Animals
Arginine Vasopressin - metabolism
Cell Separation
Electric Conductivity
Electrophysiology
Excitatory Amino Acid Antagonists - pharmacology
fluorescent protein
Glutamic Acid - pharmacology
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Isoxazoles - pharmacology
kainate receptors
Kainic Acid - pharmacology
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Neurons - drug effects
Neurons - metabolism
oxytocin
Oxytocin - metabolism
Patch-Clamp Techniques
Primary Cell Culture
Propionates - pharmacology
Rats
Rats, Transgenic
Receptors, Ionotropic Glutamate - agonists
Receptors, Ionotropic Glutamate - antagonists & inhibitors
Receptors, Ionotropic Glutamate - physiology
Receptors, Kainic Acid - agonists
Receptors, Kainic Acid - antagonists & inhibitors
Receptors, Kainic Acid - physiology
Red Fluorescent Protein
SON
Supraoptic Nucleus - cytology
Supraoptic Nucleus - drug effects
Supraoptic Nucleus - physiology
Thymine - analogs & derivatives
Thymine - pharmacology
vasopressin
title Electrophysiological Effects of Kainic Acid on Vasopressin-Enhanced Green Fluorescent Protein and Oxytocin-Monomeric Red Fluorescent Protein 1 Neurones Isolated from the Supraoptic Nucleus in Transgenic Rats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A36%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrophysiological%20Effects%20of%20Kainic%20Acid%20on%20Vasopressin-Enhanced%20Green%20Fluorescent%20Protein%20and%20Oxytocin-Monomeric%20Red%20Fluorescent%20Protein%201%20Neurones%20Isolated%20from%20the%20Supraoptic%20Nucleus%20in%20Transgenic%20Rats&rft.jtitle=Journal%20of%20neuroendocrinology&rft.au=Ohkubo,%20J.&rft.date=2014-01&rft.volume=26&rft.issue=1&rft.spage=43&rft.epage=51&rft.pages=43-51&rft.issn=0953-8194&rft.eissn=1365-2826&rft_id=info:doi/10.1111/jne.12128&rft_dat=%3Cproquest_cross%3E1496883792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1496883792&rft_id=info:pmid/24341559&rfr_iscdi=true