Electrophysiological Effects of Kainic Acid on Vasopressin-Enhanced Green Fluorescent Protein and Oxytocin-Monomeric Red Fluorescent Protein 1 Neurones Isolated from the Supraoptic Nucleus in Transgenic Rats
The supraoptic nucleus (SON) contains two types of magnocellular neurosecretory cells: arginine vasopressin (AVP)‐producing and oxytocin (OXT)‐producing cells. We recently generated and characterised two transgenic rat lines: one expressing an AVP‐enhanced green fluorescent protein (eGFP) and the ot...
Gespeichert in:
Veröffentlicht in: | Journal of neuroendocrinology 2014-01, Vol.26 (1), p.43-51 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51 |
---|---|
container_issue | 1 |
container_start_page | 43 |
container_title | Journal of neuroendocrinology |
container_volume | 26 |
creator | Ohkubo, J. Ohbuchi, T. Yoshimura, M. Maruyama, T. Ishikura, T. Matsuura, T. Suzuki, H. Ueta, Y. |
description | The supraoptic nucleus (SON) contains two types of magnocellular neurosecretory cells: arginine vasopressin (AVP)‐producing and oxytocin (OXT)‐producing cells. We recently generated and characterised two transgenic rat lines: one expressing an AVP‐enhanced green fluorescent protein (eGFP) and the other expressing an OXT‐monomeric red fluorescent protein 1 (mRFP1). These transgenic rats enable the visualisation of AVP or OXT neurones in the SON. In the present study, we compared the electrophysiological responses of AVP‐eGFP and OXT‐mRFP1 neurones to glutamic acid in SON primary cultures. Glutamate mediates fast synaptic transmission through three classes of ionotrophic receptors: the NMDA, AMPA and kainate receptors. We investigated the contributions of the three classes of ionotrophic receptors in glutamate‐induced currents. Three different antagonists were used, each predominantly selective for one of the classes of ionotrophic receptor. Next, we focused on the kainate receptors (KARs). We examined the electrophysiological effects of kainic acid (KA) on AVP‐eGFP and OXT‐mRFP1 neurones. In current clamp mode, KA induced depolarisation and increased firing rates. These KA‐induced responses were inhibited by the non‐NMDA ionotrophic receptor antagonist 6‐cyano‐7‐nitroquinoxaline‐2,3(1H4H)‐dione in both AVP‐eGFP and OXT‐mRFP1 neurones. In voltage clamp mode, the application of KA evoked inward currents in a dose‐dependent manner. The KA‐induced currents were significantly larger in OXT‐mRFP1 neurones than in AVP‐eGFP neurones. This significant difference in KA‐induced currents was abolished by the GluK1‐containing KAR antagonist UBP302. At high concentrations (250–500 μm), the specific GluK1‐containing KAR agonist (RS)‐2‐amino‐3‐(3‐hydroxy‐5‐tert‐butylisoxazol‐4‐yl) propanoic acid (ATPA) induced significantly larger currents in OXT‐mRFP1 neurones than in AVP‐eGFP neurones. Furthermore, the difference between the AVP‐eGFP and OXT‐mRFP1 neurones in the ATPA currents was approximately equal to the difference in the KA currents. These findings suggest that the GluK1‐containing KARs may be more highly expressed in OXT neurones than in AVP neurones. These results may provide new insight into the physiology and synaptic plasticity of SON neurones. |
doi_str_mv | 10.1111/jne.12128 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1496883792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1496883792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4628-dfe4917033fc1fbf9cf9a4e291b80d2d8ee0ee17d16c97090b2add02971b88993</originalsourceid><addsrcrecordid>eNp1kctu1DAUhiMEokNhwQsgL2GR1pfcvKyqdGjpTNFQCmJjeZzjjktiB9tRO0_JK-EybVfgzZF8vu-XrT_L3hJ8QNI5vLFwQCihzbNsRlhV5rSh1fNshnnJ8obwYi97FcINxqQuGX6Z7dGCFaQs-Sz73fagonfjZhuM6921UbJHrdbpNiCn0SdprFHoSJkOOYuuZHCjhxCMzVu7kVZBh-YewKKTfnJpo8BG9Nm7CMYiaTt0cbeNTiV-4awbwKe0VZL-hRO0hMk7CwGdBtfLmDjt3YDiBtCXafTSjTH5y0n1MAWUlEsvbbiG-zeuZAyvsxda9gHePMz97OtJe3n8MT-_mJ8eH53nqqhok3caCk5qzJhWRK81V5rLAign6wZ3tGsAMACpO1IpXmOO11R2Haa8TkDDOdvP3u9yR-9-TRCiGEz6S99LC24KghS8ahpWc5rQDztUeReCBy1Gbwbpt4Jgcd-fSP2Jv_0l9t1D7LQeoHsiHwtLwOEOuDU9bP-fJM6W7WNkvjNMiHD3ZEj_U1Q1q0vxbTkXi-_8x4I3V2LF_gDq1rjh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1496883792</pqid></control><display><type>article</type><title>Electrophysiological Effects of Kainic Acid on Vasopressin-Enhanced Green Fluorescent Protein and Oxytocin-Monomeric Red Fluorescent Protein 1 Neurones Isolated from the Supraoptic Nucleus in Transgenic Rats</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Ohkubo, J. ; Ohbuchi, T. ; Yoshimura, M. ; Maruyama, T. ; Ishikura, T. ; Matsuura, T. ; Suzuki, H. ; Ueta, Y.</creator><creatorcontrib>Ohkubo, J. ; Ohbuchi, T. ; Yoshimura, M. ; Maruyama, T. ; Ishikura, T. ; Matsuura, T. ; Suzuki, H. ; Ueta, Y.</creatorcontrib><description>The supraoptic nucleus (SON) contains two types of magnocellular neurosecretory cells: arginine vasopressin (AVP)‐producing and oxytocin (OXT)‐producing cells. We recently generated and characterised two transgenic rat lines: one expressing an AVP‐enhanced green fluorescent protein (eGFP) and the other expressing an OXT‐monomeric red fluorescent protein 1 (mRFP1). These transgenic rats enable the visualisation of AVP or OXT neurones in the SON. In the present study, we compared the electrophysiological responses of AVP‐eGFP and OXT‐mRFP1 neurones to glutamic acid in SON primary cultures. Glutamate mediates fast synaptic transmission through three classes of ionotrophic receptors: the NMDA, AMPA and kainate receptors. We investigated the contributions of the three classes of ionotrophic receptors in glutamate‐induced currents. Three different antagonists were used, each predominantly selective for one of the classes of ionotrophic receptor. Next, we focused on the kainate receptors (KARs). We examined the electrophysiological effects of kainic acid (KA) on AVP‐eGFP and OXT‐mRFP1 neurones. In current clamp mode, KA induced depolarisation and increased firing rates. These KA‐induced responses were inhibited by the non‐NMDA ionotrophic receptor antagonist 6‐cyano‐7‐nitroquinoxaline‐2,3(1H4H)‐dione in both AVP‐eGFP and OXT‐mRFP1 neurones. In voltage clamp mode, the application of KA evoked inward currents in a dose‐dependent manner. The KA‐induced currents were significantly larger in OXT‐mRFP1 neurones than in AVP‐eGFP neurones. This significant difference in KA‐induced currents was abolished by the GluK1‐containing KAR antagonist UBP302. At high concentrations (250–500 μm), the specific GluK1‐containing KAR agonist (RS)‐2‐amino‐3‐(3‐hydroxy‐5‐tert‐butylisoxazol‐4‐yl) propanoic acid (ATPA) induced significantly larger currents in OXT‐mRFP1 neurones than in AVP‐eGFP neurones. Furthermore, the difference between the AVP‐eGFP and OXT‐mRFP1 neurones in the ATPA currents was approximately equal to the difference in the KA currents. These findings suggest that the GluK1‐containing KARs may be more highly expressed in OXT neurones than in AVP neurones. These results may provide new insight into the physiology and synaptic plasticity of SON neurones.</description><identifier>ISSN: 0953-8194</identifier><identifier>EISSN: 1365-2826</identifier><identifier>DOI: 10.1111/jne.12128</identifier><identifier>PMID: 24341559</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology ; Action Potentials - drug effects ; Action Potentials - physiology ; Alanine - analogs & derivatives ; Alanine - pharmacology ; Animals ; Arginine Vasopressin - metabolism ; Cell Separation ; Electric Conductivity ; Electrophysiology ; Excitatory Amino Acid Antagonists - pharmacology ; fluorescent protein ; Glutamic Acid - pharmacology ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Isoxazoles - pharmacology ; kainate receptors ; Kainic Acid - pharmacology ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Neurons - drug effects ; Neurons - metabolism ; oxytocin ; Oxytocin - metabolism ; Patch-Clamp Techniques ; Primary Cell Culture ; Propionates - pharmacology ; Rats ; Rats, Transgenic ; Receptors, Ionotropic Glutamate - agonists ; Receptors, Ionotropic Glutamate - antagonists & inhibitors ; Receptors, Ionotropic Glutamate - physiology ; Receptors, Kainic Acid - agonists ; Receptors, Kainic Acid - antagonists & inhibitors ; Receptors, Kainic Acid - physiology ; Red Fluorescent Protein ; SON ; Supraoptic Nucleus - cytology ; Supraoptic Nucleus - drug effects ; Supraoptic Nucleus - physiology ; Thymine - analogs & derivatives ; Thymine - pharmacology ; vasopressin</subject><ispartof>Journal of neuroendocrinology, 2014-01, Vol.26 (1), p.43-51</ispartof><rights>2014 British Society for Neuroendocrinology</rights><rights>2014 British Society for Neuroendocrinology.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4628-dfe4917033fc1fbf9cf9a4e291b80d2d8ee0ee17d16c97090b2add02971b88993</citedby><cites>FETCH-LOGICAL-c4628-dfe4917033fc1fbf9cf9a4e291b80d2d8ee0ee17d16c97090b2add02971b88993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjne.12128$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjne.12128$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24341559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohkubo, J.</creatorcontrib><creatorcontrib>Ohbuchi, T.</creatorcontrib><creatorcontrib>Yoshimura, M.</creatorcontrib><creatorcontrib>Maruyama, T.</creatorcontrib><creatorcontrib>Ishikura, T.</creatorcontrib><creatorcontrib>Matsuura, T.</creatorcontrib><creatorcontrib>Suzuki, H.</creatorcontrib><creatorcontrib>Ueta, Y.</creatorcontrib><title>Electrophysiological Effects of Kainic Acid on Vasopressin-Enhanced Green Fluorescent Protein and Oxytocin-Monomeric Red Fluorescent Protein 1 Neurones Isolated from the Supraoptic Nucleus in Transgenic Rats</title><title>Journal of neuroendocrinology</title><addtitle>J Neuroendocrinol</addtitle><description>The supraoptic nucleus (SON) contains two types of magnocellular neurosecretory cells: arginine vasopressin (AVP)‐producing and oxytocin (OXT)‐producing cells. We recently generated and characterised two transgenic rat lines: one expressing an AVP‐enhanced green fluorescent protein (eGFP) and the other expressing an OXT‐monomeric red fluorescent protein 1 (mRFP1). These transgenic rats enable the visualisation of AVP or OXT neurones in the SON. In the present study, we compared the electrophysiological responses of AVP‐eGFP and OXT‐mRFP1 neurones to glutamic acid in SON primary cultures. Glutamate mediates fast synaptic transmission through three classes of ionotrophic receptors: the NMDA, AMPA and kainate receptors. We investigated the contributions of the three classes of ionotrophic receptors in glutamate‐induced currents. Three different antagonists were used, each predominantly selective for one of the classes of ionotrophic receptor. Next, we focused on the kainate receptors (KARs). We examined the electrophysiological effects of kainic acid (KA) on AVP‐eGFP and OXT‐mRFP1 neurones. In current clamp mode, KA induced depolarisation and increased firing rates. These KA‐induced responses were inhibited by the non‐NMDA ionotrophic receptor antagonist 6‐cyano‐7‐nitroquinoxaline‐2,3(1H4H)‐dione in both AVP‐eGFP and OXT‐mRFP1 neurones. In voltage clamp mode, the application of KA evoked inward currents in a dose‐dependent manner. The KA‐induced currents were significantly larger in OXT‐mRFP1 neurones than in AVP‐eGFP neurones. This significant difference in KA‐induced currents was abolished by the GluK1‐containing KAR antagonist UBP302. At high concentrations (250–500 μm), the specific GluK1‐containing KAR agonist (RS)‐2‐amino‐3‐(3‐hydroxy‐5‐tert‐butylisoxazol‐4‐yl) propanoic acid (ATPA) induced significantly larger currents in OXT‐mRFP1 neurones than in AVP‐eGFP neurones. Furthermore, the difference between the AVP‐eGFP and OXT‐mRFP1 neurones in the ATPA currents was approximately equal to the difference in the KA currents. These findings suggest that the GluK1‐containing KARs may be more highly expressed in OXT neurones than in AVP neurones. These results may provide new insight into the physiology and synaptic plasticity of SON neurones.</description><subject>6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology</subject><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Alanine - analogs & derivatives</subject><subject>Alanine - pharmacology</subject><subject>Animals</subject><subject>Arginine Vasopressin - metabolism</subject><subject>Cell Separation</subject><subject>Electric Conductivity</subject><subject>Electrophysiology</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>fluorescent protein</subject><subject>Glutamic Acid - pharmacology</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Isoxazoles - pharmacology</subject><subject>kainate receptors</subject><subject>Kainic Acid - pharmacology</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>oxytocin</subject><subject>Oxytocin - metabolism</subject><subject>Patch-Clamp Techniques</subject><subject>Primary Cell Culture</subject><subject>Propionates - pharmacology</subject><subject>Rats</subject><subject>Rats, Transgenic</subject><subject>Receptors, Ionotropic Glutamate - agonists</subject><subject>Receptors, Ionotropic Glutamate - antagonists & inhibitors</subject><subject>Receptors, Ionotropic Glutamate - physiology</subject><subject>Receptors, Kainic Acid - agonists</subject><subject>Receptors, Kainic Acid - antagonists & inhibitors</subject><subject>Receptors, Kainic Acid - physiology</subject><subject>Red Fluorescent Protein</subject><subject>SON</subject><subject>Supraoptic Nucleus - cytology</subject><subject>Supraoptic Nucleus - drug effects</subject><subject>Supraoptic Nucleus - physiology</subject><subject>Thymine - analogs & derivatives</subject><subject>Thymine - pharmacology</subject><subject>vasopressin</subject><issn>0953-8194</issn><issn>1365-2826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctu1DAUhiMEokNhwQsgL2GR1pfcvKyqdGjpTNFQCmJjeZzjjktiB9tRO0_JK-EybVfgzZF8vu-XrT_L3hJ8QNI5vLFwQCihzbNsRlhV5rSh1fNshnnJ8obwYi97FcINxqQuGX6Z7dGCFaQs-Sz73fagonfjZhuM6921UbJHrdbpNiCn0SdprFHoSJkOOYuuZHCjhxCMzVu7kVZBh-YewKKTfnJpo8BG9Nm7CMYiaTt0cbeNTiV-4awbwKe0VZL-hRO0hMk7CwGdBtfLmDjt3YDiBtCXafTSjTH5y0n1MAWUlEsvbbiG-zeuZAyvsxda9gHePMz97OtJe3n8MT-_mJ8eH53nqqhok3caCk5qzJhWRK81V5rLAign6wZ3tGsAMACpO1IpXmOO11R2Haa8TkDDOdvP3u9yR-9-TRCiGEz6S99LC24KghS8ahpWc5rQDztUeReCBy1Gbwbpt4Jgcd-fSP2Jv_0l9t1D7LQeoHsiHwtLwOEOuDU9bP-fJM6W7WNkvjNMiHD3ZEj_U1Q1q0vxbTkXi-_8x4I3V2LF_gDq1rjh</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Ohkubo, J.</creator><creator>Ohbuchi, T.</creator><creator>Yoshimura, M.</creator><creator>Maruyama, T.</creator><creator>Ishikura, T.</creator><creator>Matsuura, T.</creator><creator>Suzuki, H.</creator><creator>Ueta, Y.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201401</creationdate><title>Electrophysiological Effects of Kainic Acid on Vasopressin-Enhanced Green Fluorescent Protein and Oxytocin-Monomeric Red Fluorescent Protein 1 Neurones Isolated from the Supraoptic Nucleus in Transgenic Rats</title><author>Ohkubo, J. ; Ohbuchi, T. ; Yoshimura, M. ; Maruyama, T. ; Ishikura, T. ; Matsuura, T. ; Suzuki, H. ; Ueta, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4628-dfe4917033fc1fbf9cf9a4e291b80d2d8ee0ee17d16c97090b2add02971b88993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology</topic><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Alanine - analogs & derivatives</topic><topic>Alanine - pharmacology</topic><topic>Animals</topic><topic>Arginine Vasopressin - metabolism</topic><topic>Cell Separation</topic><topic>Electric Conductivity</topic><topic>Electrophysiology</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>fluorescent protein</topic><topic>Glutamic Acid - pharmacology</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Isoxazoles - pharmacology</topic><topic>kainate receptors</topic><topic>Kainic Acid - pharmacology</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>oxytocin</topic><topic>Oxytocin - metabolism</topic><topic>Patch-Clamp Techniques</topic><topic>Primary Cell Culture</topic><topic>Propionates - pharmacology</topic><topic>Rats</topic><topic>Rats, Transgenic</topic><topic>Receptors, Ionotropic Glutamate - agonists</topic><topic>Receptors, Ionotropic Glutamate - antagonists & inhibitors</topic><topic>Receptors, Ionotropic Glutamate - physiology</topic><topic>Receptors, Kainic Acid - agonists</topic><topic>Receptors, Kainic Acid - antagonists & inhibitors</topic><topic>Receptors, Kainic Acid - physiology</topic><topic>Red Fluorescent Protein</topic><topic>SON</topic><topic>Supraoptic Nucleus - cytology</topic><topic>Supraoptic Nucleus - drug effects</topic><topic>Supraoptic Nucleus - physiology</topic><topic>Thymine - analogs & derivatives</topic><topic>Thymine - pharmacology</topic><topic>vasopressin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohkubo, J.</creatorcontrib><creatorcontrib>Ohbuchi, T.</creatorcontrib><creatorcontrib>Yoshimura, M.</creatorcontrib><creatorcontrib>Maruyama, T.</creatorcontrib><creatorcontrib>Ishikura, T.</creatorcontrib><creatorcontrib>Matsuura, T.</creatorcontrib><creatorcontrib>Suzuki, H.</creatorcontrib><creatorcontrib>Ueta, Y.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of neuroendocrinology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohkubo, J.</au><au>Ohbuchi, T.</au><au>Yoshimura, M.</au><au>Maruyama, T.</au><au>Ishikura, T.</au><au>Matsuura, T.</au><au>Suzuki, H.</au><au>Ueta, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrophysiological Effects of Kainic Acid on Vasopressin-Enhanced Green Fluorescent Protein and Oxytocin-Monomeric Red Fluorescent Protein 1 Neurones Isolated from the Supraoptic Nucleus in Transgenic Rats</atitle><jtitle>Journal of neuroendocrinology</jtitle><addtitle>J Neuroendocrinol</addtitle><date>2014-01</date><risdate>2014</risdate><volume>26</volume><issue>1</issue><spage>43</spage><epage>51</epage><pages>43-51</pages><issn>0953-8194</issn><eissn>1365-2826</eissn><abstract>The supraoptic nucleus (SON) contains two types of magnocellular neurosecretory cells: arginine vasopressin (AVP)‐producing and oxytocin (OXT)‐producing cells. We recently generated and characterised two transgenic rat lines: one expressing an AVP‐enhanced green fluorescent protein (eGFP) and the other expressing an OXT‐monomeric red fluorescent protein 1 (mRFP1). These transgenic rats enable the visualisation of AVP or OXT neurones in the SON. In the present study, we compared the electrophysiological responses of AVP‐eGFP and OXT‐mRFP1 neurones to glutamic acid in SON primary cultures. Glutamate mediates fast synaptic transmission through three classes of ionotrophic receptors: the NMDA, AMPA and kainate receptors. We investigated the contributions of the three classes of ionotrophic receptors in glutamate‐induced currents. Three different antagonists were used, each predominantly selective for one of the classes of ionotrophic receptor. Next, we focused on the kainate receptors (KARs). We examined the electrophysiological effects of kainic acid (KA) on AVP‐eGFP and OXT‐mRFP1 neurones. In current clamp mode, KA induced depolarisation and increased firing rates. These KA‐induced responses were inhibited by the non‐NMDA ionotrophic receptor antagonist 6‐cyano‐7‐nitroquinoxaline‐2,3(1H4H)‐dione in both AVP‐eGFP and OXT‐mRFP1 neurones. In voltage clamp mode, the application of KA evoked inward currents in a dose‐dependent manner. The KA‐induced currents were significantly larger in OXT‐mRFP1 neurones than in AVP‐eGFP neurones. This significant difference in KA‐induced currents was abolished by the GluK1‐containing KAR antagonist UBP302. At high concentrations (250–500 μm), the specific GluK1‐containing KAR agonist (RS)‐2‐amino‐3‐(3‐hydroxy‐5‐tert‐butylisoxazol‐4‐yl) propanoic acid (ATPA) induced significantly larger currents in OXT‐mRFP1 neurones than in AVP‐eGFP neurones. Furthermore, the difference between the AVP‐eGFP and OXT‐mRFP1 neurones in the ATPA currents was approximately equal to the difference in the KA currents. These findings suggest that the GluK1‐containing KARs may be more highly expressed in OXT neurones than in AVP neurones. These results may provide new insight into the physiology and synaptic plasticity of SON neurones.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24341559</pmid><doi>10.1111/jne.12128</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8194 |
ispartof | Journal of neuroendocrinology, 2014-01, Vol.26 (1), p.43-51 |
issn | 0953-8194 1365-2826 |
language | eng |
recordid | cdi_proquest_miscellaneous_1496883792 |
source | MEDLINE; Access via Wiley Online Library |
subjects | 6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology Action Potentials - drug effects Action Potentials - physiology Alanine - analogs & derivatives Alanine - pharmacology Animals Arginine Vasopressin - metabolism Cell Separation Electric Conductivity Electrophysiology Excitatory Amino Acid Antagonists - pharmacology fluorescent protein Glutamic Acid - pharmacology Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Isoxazoles - pharmacology kainate receptors Kainic Acid - pharmacology Luminescent Proteins - genetics Luminescent Proteins - metabolism Neurons - drug effects Neurons - metabolism oxytocin Oxytocin - metabolism Patch-Clamp Techniques Primary Cell Culture Propionates - pharmacology Rats Rats, Transgenic Receptors, Ionotropic Glutamate - agonists Receptors, Ionotropic Glutamate - antagonists & inhibitors Receptors, Ionotropic Glutamate - physiology Receptors, Kainic Acid - agonists Receptors, Kainic Acid - antagonists & inhibitors Receptors, Kainic Acid - physiology Red Fluorescent Protein SON Supraoptic Nucleus - cytology Supraoptic Nucleus - drug effects Supraoptic Nucleus - physiology Thymine - analogs & derivatives Thymine - pharmacology vasopressin |
title | Electrophysiological Effects of Kainic Acid on Vasopressin-Enhanced Green Fluorescent Protein and Oxytocin-Monomeric Red Fluorescent Protein 1 Neurones Isolated from the Supraoptic Nucleus in Transgenic Rats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A36%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrophysiological%20Effects%20of%20Kainic%20Acid%20on%20Vasopressin-Enhanced%20Green%20Fluorescent%20Protein%20and%20Oxytocin-Monomeric%20Red%20Fluorescent%20Protein%201%20Neurones%20Isolated%20from%20the%20Supraoptic%20Nucleus%20in%20Transgenic%20Rats&rft.jtitle=Journal%20of%20neuroendocrinology&rft.au=Ohkubo,%20J.&rft.date=2014-01&rft.volume=26&rft.issue=1&rft.spage=43&rft.epage=51&rft.pages=43-51&rft.issn=0953-8194&rft.eissn=1365-2826&rft_id=info:doi/10.1111/jne.12128&rft_dat=%3Cproquest_cross%3E1496883792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1496883792&rft_id=info:pmid/24341559&rfr_iscdi=true |