The asymptotics of the solutions to the anomalous diffusion equations
In this paper, we study the asymptotics of the solutions to the anomalous diffusion equations. The fractional anomalous diffusion equations are obtained from the existing anomalous diffusion and typical diffusion equations by replacing the first-order time derivative with fractional derivatives of o...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2013-09, Vol.66 (5), p.682-692 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 692 |
---|---|
container_issue | 5 |
container_start_page | 682 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 66 |
creator | Ma, Yutian Zhang, Fengrong Li, Changpin |
description | In this paper, we study the asymptotics of the solutions to the anomalous diffusion equations. The fractional anomalous diffusion equations are obtained from the existing anomalous diffusion and typical diffusion equations by replacing the first-order time derivative with fractional derivatives of order α∈(0,1) for the sub-diffusion and α∈(1,2) for the super-diffusion respectively. In most situations, fractional derivatives mean Riemann–Liouville derivative or Caputo derivative. In this paper, we use these two kinds of fractional derivatives. Using Laplace transform and Fourier transform, we obtain the asymptotics estimates of solutions to the anomalous diffusion equations. |
doi_str_mv | 10.1016/j.camwa.2013.01.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1494365486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089812211300062X</els_id><sourcerecordid>1494365486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-558d6efa181a3943220f3b91ed49142f7d7ce7a3596341a9f6932ad4a401cba43</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwCVgysiT4bMdJBgZUlT9SJZYyW1fHFq6SuI0dUL89bsvMdNK7957ufoTcAy2AgnzcFhr7HywYBV5QKChnF2QGdcXzSsr6ksxo3dQ5MAbX5CaELaVUcEZnZLn-MhmGQ7-LPjodMm-zmKTguyk6P4Qs-pOAg--x81PIWmftFNIuM_sJT6ZbcmWxC-bub87J58tyvXjLVx-v74vnVa55DTEvy7qVxiLUgLxJBzBq-aYB04oGBLNVW2lTIS8byQVgY2XDGbYCBQW9QcHn5OHcuxv9fjIhqt4FbboOB5NOUyBSqyxFLZOVn6169CGMxqrd6HocDwqoOkJTW3WCpo7QFAWVoKXU0zll0hffzowqaGcGbVo3Gh1V692_-V9arHZu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1494365486</pqid></control><display><type>article</type><title>The asymptotics of the solutions to the anomalous diffusion equations</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ma, Yutian ; Zhang, Fengrong ; Li, Changpin</creator><creatorcontrib>Ma, Yutian ; Zhang, Fengrong ; Li, Changpin</creatorcontrib><description>In this paper, we study the asymptotics of the solutions to the anomalous diffusion equations. The fractional anomalous diffusion equations are obtained from the existing anomalous diffusion and typical diffusion equations by replacing the first-order time derivative with fractional derivatives of order α∈(0,1) for the sub-diffusion and α∈(1,2) for the super-diffusion respectively. In most situations, fractional derivatives mean Riemann–Liouville derivative or Caputo derivative. In this paper, we use these two kinds of fractional derivatives. Using Laplace transform and Fourier transform, we obtain the asymptotics estimates of solutions to the anomalous diffusion equations.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2013.01.032</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anomalous diffusion equation ; Asymptotic properties ; Asymptotics ; Caputo derivative ; Riemann–Liouville derivative</subject><ispartof>Computers & mathematics with applications (1987), 2013-09, Vol.66 (5), p.682-692</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-558d6efa181a3943220f3b91ed49142f7d7ce7a3596341a9f6932ad4a401cba43</citedby><cites>FETCH-LOGICAL-c381t-558d6efa181a3943220f3b91ed49142f7d7ce7a3596341a9f6932ad4a401cba43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S089812211300062X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Ma, Yutian</creatorcontrib><creatorcontrib>Zhang, Fengrong</creatorcontrib><creatorcontrib>Li, Changpin</creatorcontrib><title>The asymptotics of the solutions to the anomalous diffusion equations</title><title>Computers & mathematics with applications (1987)</title><description>In this paper, we study the asymptotics of the solutions to the anomalous diffusion equations. The fractional anomalous diffusion equations are obtained from the existing anomalous diffusion and typical diffusion equations by replacing the first-order time derivative with fractional derivatives of order α∈(0,1) for the sub-diffusion and α∈(1,2) for the super-diffusion respectively. In most situations, fractional derivatives mean Riemann–Liouville derivative or Caputo derivative. In this paper, we use these two kinds of fractional derivatives. Using Laplace transform and Fourier transform, we obtain the asymptotics estimates of solutions to the anomalous diffusion equations.</description><subject>Anomalous diffusion equation</subject><subject>Asymptotic properties</subject><subject>Asymptotics</subject><subject>Caputo derivative</subject><subject>Riemann–Liouville derivative</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwCVgysiT4bMdJBgZUlT9SJZYyW1fHFq6SuI0dUL89bsvMdNK7957ufoTcAy2AgnzcFhr7HywYBV5QKChnF2QGdcXzSsr6ksxo3dQ5MAbX5CaELaVUcEZnZLn-MhmGQ7-LPjodMm-zmKTguyk6P4Qs-pOAg--x81PIWmftFNIuM_sJT6ZbcmWxC-bub87J58tyvXjLVx-v74vnVa55DTEvy7qVxiLUgLxJBzBq-aYB04oGBLNVW2lTIS8byQVgY2XDGbYCBQW9QcHn5OHcuxv9fjIhqt4FbboOB5NOUyBSqyxFLZOVn6169CGMxqrd6HocDwqoOkJTW3WCpo7QFAWVoKXU0zll0hffzowqaGcGbVo3Gh1V692_-V9arHZu</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Ma, Yutian</creator><creator>Zhang, Fengrong</creator><creator>Li, Changpin</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201309</creationdate><title>The asymptotics of the solutions to the anomalous diffusion equations</title><author>Ma, Yutian ; Zhang, Fengrong ; Li, Changpin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-558d6efa181a3943220f3b91ed49142f7d7ce7a3596341a9f6932ad4a401cba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anomalous diffusion equation</topic><topic>Asymptotic properties</topic><topic>Asymptotics</topic><topic>Caputo derivative</topic><topic>Riemann–Liouville derivative</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yutian</creatorcontrib><creatorcontrib>Zhang, Fengrong</creatorcontrib><creatorcontrib>Li, Changpin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Yutian</au><au>Zhang, Fengrong</au><au>Li, Changpin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The asymptotics of the solutions to the anomalous diffusion equations</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2013-09</date><risdate>2013</risdate><volume>66</volume><issue>5</issue><spage>682</spage><epage>692</epage><pages>682-692</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper, we study the asymptotics of the solutions to the anomalous diffusion equations. The fractional anomalous diffusion equations are obtained from the existing anomalous diffusion and typical diffusion equations by replacing the first-order time derivative with fractional derivatives of order α∈(0,1) for the sub-diffusion and α∈(1,2) for the super-diffusion respectively. In most situations, fractional derivatives mean Riemann–Liouville derivative or Caputo derivative. In this paper, we use these two kinds of fractional derivatives. Using Laplace transform and Fourier transform, we obtain the asymptotics estimates of solutions to the anomalous diffusion equations.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2013.01.032</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2013-09, Vol.66 (5), p.682-692 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_1494365486 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Anomalous diffusion equation Asymptotic properties Asymptotics Caputo derivative Riemann–Liouville derivative |
title | The asymptotics of the solutions to the anomalous diffusion equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A41%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20asymptotics%20of%20the%20solutions%20to%20the%20anomalous%20diffusion%20equations&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Ma,%20Yutian&rft.date=2013-09&rft.volume=66&rft.issue=5&rft.spage=682&rft.epage=692&rft.pages=682-692&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2013.01.032&rft_dat=%3Cproquest_cross%3E1494365486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1494365486&rft_id=info:pmid/&rft_els_id=S089812211300062X&rfr_iscdi=true |