The asymptotics of the solutions to the anomalous diffusion equations

In this paper, we study the asymptotics of the solutions to the anomalous diffusion equations. The fractional anomalous diffusion equations are obtained from the existing anomalous diffusion and typical diffusion equations by replacing the first-order time derivative with fractional derivatives of o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2013-09, Vol.66 (5), p.682-692
Hauptverfasser: Ma, Yutian, Zhang, Fengrong, Li, Changpin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 692
container_issue 5
container_start_page 682
container_title Computers & mathematics with applications (1987)
container_volume 66
creator Ma, Yutian
Zhang, Fengrong
Li, Changpin
description In this paper, we study the asymptotics of the solutions to the anomalous diffusion equations. The fractional anomalous diffusion equations are obtained from the existing anomalous diffusion and typical diffusion equations by replacing the first-order time derivative with fractional derivatives of order α∈(0,1) for the sub-diffusion and α∈(1,2) for the super-diffusion respectively. In most situations, fractional derivatives mean Riemann–Liouville derivative or Caputo derivative. In this paper, we use these two kinds of fractional derivatives. Using Laplace transform and Fourier transform, we obtain the asymptotics estimates of solutions to the anomalous diffusion equations.
doi_str_mv 10.1016/j.camwa.2013.01.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1494365486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089812211300062X</els_id><sourcerecordid>1494365486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-558d6efa181a3943220f3b91ed49142f7d7ce7a3596341a9f6932ad4a401cba43</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwCVgysiT4bMdJBgZUlT9SJZYyW1fHFq6SuI0dUL89bsvMdNK7957ufoTcAy2AgnzcFhr7HywYBV5QKChnF2QGdcXzSsr6ksxo3dQ5MAbX5CaELaVUcEZnZLn-MhmGQ7-LPjodMm-zmKTguyk6P4Qs-pOAg--x81PIWmftFNIuM_sJT6ZbcmWxC-bub87J58tyvXjLVx-v74vnVa55DTEvy7qVxiLUgLxJBzBq-aYB04oGBLNVW2lTIS8byQVgY2XDGbYCBQW9QcHn5OHcuxv9fjIhqt4FbboOB5NOUyBSqyxFLZOVn6169CGMxqrd6HocDwqoOkJTW3WCpo7QFAWVoKXU0zll0hffzowqaGcGbVo3Gh1V692_-V9arHZu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1494365486</pqid></control><display><type>article</type><title>The asymptotics of the solutions to the anomalous diffusion equations</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ma, Yutian ; Zhang, Fengrong ; Li, Changpin</creator><creatorcontrib>Ma, Yutian ; Zhang, Fengrong ; Li, Changpin</creatorcontrib><description>In this paper, we study the asymptotics of the solutions to the anomalous diffusion equations. The fractional anomalous diffusion equations are obtained from the existing anomalous diffusion and typical diffusion equations by replacing the first-order time derivative with fractional derivatives of order α∈(0,1) for the sub-diffusion and α∈(1,2) for the super-diffusion respectively. In most situations, fractional derivatives mean Riemann–Liouville derivative or Caputo derivative. In this paper, we use these two kinds of fractional derivatives. Using Laplace transform and Fourier transform, we obtain the asymptotics estimates of solutions to the anomalous diffusion equations.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2013.01.032</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anomalous diffusion equation ; Asymptotic properties ; Asymptotics ; Caputo derivative ; Riemann–Liouville derivative</subject><ispartof>Computers &amp; mathematics with applications (1987), 2013-09, Vol.66 (5), p.682-692</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-558d6efa181a3943220f3b91ed49142f7d7ce7a3596341a9f6932ad4a401cba43</citedby><cites>FETCH-LOGICAL-c381t-558d6efa181a3943220f3b91ed49142f7d7ce7a3596341a9f6932ad4a401cba43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S089812211300062X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Ma, Yutian</creatorcontrib><creatorcontrib>Zhang, Fengrong</creatorcontrib><creatorcontrib>Li, Changpin</creatorcontrib><title>The asymptotics of the solutions to the anomalous diffusion equations</title><title>Computers &amp; mathematics with applications (1987)</title><description>In this paper, we study the asymptotics of the solutions to the anomalous diffusion equations. The fractional anomalous diffusion equations are obtained from the existing anomalous diffusion and typical diffusion equations by replacing the first-order time derivative with fractional derivatives of order α∈(0,1) for the sub-diffusion and α∈(1,2) for the super-diffusion respectively. In most situations, fractional derivatives mean Riemann–Liouville derivative or Caputo derivative. In this paper, we use these two kinds of fractional derivatives. Using Laplace transform and Fourier transform, we obtain the asymptotics estimates of solutions to the anomalous diffusion equations.</description><subject>Anomalous diffusion equation</subject><subject>Asymptotic properties</subject><subject>Asymptotics</subject><subject>Caputo derivative</subject><subject>Riemann–Liouville derivative</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwCVgysiT4bMdJBgZUlT9SJZYyW1fHFq6SuI0dUL89bsvMdNK7957ufoTcAy2AgnzcFhr7HywYBV5QKChnF2QGdcXzSsr6ksxo3dQ5MAbX5CaELaVUcEZnZLn-MhmGQ7-LPjodMm-zmKTguyk6P4Qs-pOAg--x81PIWmftFNIuM_sJT6ZbcmWxC-bub87J58tyvXjLVx-v74vnVa55DTEvy7qVxiLUgLxJBzBq-aYB04oGBLNVW2lTIS8byQVgY2XDGbYCBQW9QcHn5OHcuxv9fjIhqt4FbboOB5NOUyBSqyxFLZOVn6169CGMxqrd6HocDwqoOkJTW3WCpo7QFAWVoKXU0zll0hffzowqaGcGbVo3Gh1V692_-V9arHZu</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Ma, Yutian</creator><creator>Zhang, Fengrong</creator><creator>Li, Changpin</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201309</creationdate><title>The asymptotics of the solutions to the anomalous diffusion equations</title><author>Ma, Yutian ; Zhang, Fengrong ; Li, Changpin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-558d6efa181a3943220f3b91ed49142f7d7ce7a3596341a9f6932ad4a401cba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anomalous diffusion equation</topic><topic>Asymptotic properties</topic><topic>Asymptotics</topic><topic>Caputo derivative</topic><topic>Riemann–Liouville derivative</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yutian</creatorcontrib><creatorcontrib>Zhang, Fengrong</creatorcontrib><creatorcontrib>Li, Changpin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Yutian</au><au>Zhang, Fengrong</au><au>Li, Changpin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The asymptotics of the solutions to the anomalous diffusion equations</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2013-09</date><risdate>2013</risdate><volume>66</volume><issue>5</issue><spage>682</spage><epage>692</epage><pages>682-692</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper, we study the asymptotics of the solutions to the anomalous diffusion equations. The fractional anomalous diffusion equations are obtained from the existing anomalous diffusion and typical diffusion equations by replacing the first-order time derivative with fractional derivatives of order α∈(0,1) for the sub-diffusion and α∈(1,2) for the super-diffusion respectively. In most situations, fractional derivatives mean Riemann–Liouville derivative or Caputo derivative. In this paper, we use these two kinds of fractional derivatives. Using Laplace transform and Fourier transform, we obtain the asymptotics estimates of solutions to the anomalous diffusion equations.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2013.01.032</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2013-09, Vol.66 (5), p.682-692
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_1494365486
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Anomalous diffusion equation
Asymptotic properties
Asymptotics
Caputo derivative
Riemann–Liouville derivative
title The asymptotics of the solutions to the anomalous diffusion equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A41%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20asymptotics%20of%20the%20solutions%20to%20the%20anomalous%20diffusion%20equations&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Ma,%20Yutian&rft.date=2013-09&rft.volume=66&rft.issue=5&rft.spage=682&rft.epage=692&rft.pages=682-692&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2013.01.032&rft_dat=%3Cproquest_cross%3E1494365486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1494365486&rft_id=info:pmid/&rft_els_id=S089812211300062X&rfr_iscdi=true