Neuronal Assembly Dynamics in Supervised and Unsupervised Learning Scenarios
The dynamic formation of groups of neurons—neuronal assemblies—is believed to mediate cognitive phenomena at many levels, but their detailed operation and mechanisms of interaction are still to be uncovered. One hypothesis suggests that synchronized oscillations underpin their formation and function...
Gespeichert in:
Veröffentlicht in: | Neural computation 2013-11, Vol.25 (11), p.2934-2975 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2975 |
---|---|
container_issue | 11 |
container_start_page | 2934 |
container_title | Neural computation |
container_volume | 25 |
creator | Moioli, Renan C Husbands, Phil |
description | The dynamic formation of groups of neurons—neuronal assemblies—is believed to mediate cognitive phenomena at many levels, but their detailed operation and mechanisms of interaction are still to be uncovered. One hypothesis suggests that synchronized oscillations underpin their formation and functioning, with a focus on the temporal structure of neuronal signals. In this context, we investigate neuronal assembly dynamics in two complementary scenarios: the first, a supervised spike pattern classification task, in which noisy variations of a collection of spikes have to be correctly labeled; the second, an unsupervised, minimally cognitive evolutionary robotics tasks, in which an evolved agent has to cope with multiple, possibly conflicting, objectives. In both cases, the more traditional dynamical analysis of the system's variables is paired with information-theoretic techniques in order to get a broader picture of the ongoing interactions with and within the network. The neural network model is inspired by the Kuramoto model of coupled phase oscillators and allows one to fine-tune the network synchronization dynamics and assembly configuration. The experiments explore the computational power, redundancy, and generalization capability of neuronal circuits, demonstrating that performance depends nonlinearly on the number of assemblies and neurons in the network and showing that the framework can be exploited to generate minimally cognitive behaviors, with dynamic assembly formation accounting for varying degrees of stimuli modulation of the sensorimotor interactions. |
doi_str_mv | 10.1162/NECO_a_00502 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1494355953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1494355953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-23f5381e5af87f1832157581186859b63cccedb8a8fe465f570cf8dd5054d9fe3</originalsourceid><addsrcrecordid>eNqN0UFLHDEUB_AgLbpde_MsA714cGpeMplJjsuqtbDoQYXeQjbzIpGZzJo4wvbTN7raLsWDEAiEX_7v8R4hB0C_A9Ts5PJsfqWNplRQtkMmIDgtpZS_PpEJlUqVTV03e-RLSveU0hqo2CV7jEsl8ocJWVziGIdgumKWEvbLbl2croPpvU2FD8X1uML45BO2hQltcRvSv4cFmhh8uCuuLQYT_ZD2yWdnuoRfX-8puT0_u5lflIurHz_ns0VpKwmPJeNOcAkojJONA8kZiEZIAFlLoZY1t9Ziu5RGOqxq4URDrZNtmzuuWuWQT8nRJncVh4cR06PufbLYdSbgMCYNlaq4EErwD9CKc8VVtlPy7T96P4wxj-ZFPZ88wKyON8rGIaWITq-i701ca6D6eSF6eyGZH76Gjsse27_4bQMZzDag91sFA9rhiQkPoDllAmrNKIOcr6nSv_3qBWwVOXon491-_gDeAqa9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441441000</pqid></control><display><type>article</type><title>Neuronal Assembly Dynamics in Supervised and Unsupervised Learning Scenarios</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Moioli, Renan C ; Husbands, Phil</creator><creatorcontrib>Moioli, Renan C ; Husbands, Phil</creatorcontrib><description>The dynamic formation of groups of neurons—neuronal assemblies—is believed to mediate cognitive phenomena at many levels, but their detailed operation and mechanisms of interaction are still to be uncovered. One hypothesis suggests that synchronized oscillations underpin their formation and functioning, with a focus on the temporal structure of neuronal signals. In this context, we investigate neuronal assembly dynamics in two complementary scenarios: the first, a supervised spike pattern classification task, in which noisy variations of a collection of spikes have to be correctly labeled; the second, an unsupervised, minimally cognitive evolutionary robotics tasks, in which an evolved agent has to cope with multiple, possibly conflicting, objectives. In both cases, the more traditional dynamical analysis of the system's variables is paired with information-theoretic techniques in order to get a broader picture of the ongoing interactions with and within the network. The neural network model is inspired by the Kuramoto model of coupled phase oscillators and allows one to fine-tune the network synchronization dynamics and assembly configuration. The experiments explore the computational power, redundancy, and generalization capability of neuronal circuits, demonstrating that performance depends nonlinearly on the number of assemblies and neurons in the network and showing that the framework can be exploited to generate minimally cognitive behaviors, with dynamic assembly formation accounting for varying degrees of stimuli modulation of the sensorimotor interactions.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/NECO_a_00502</identifier><identifier>PMID: 23895050</identifier><identifier>CODEN: NEUCEB</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Algorithms ; Animals ; Assembly ; Brain - physiology ; Cognition & reasoning ; Humans ; Information theory ; Learning - physiology ; Letters ; Neural networks ; Neural Networks (Computer) ; Neurons ; Neurons - physiology ; Robotics</subject><ispartof>Neural computation, 2013-11, Vol.25 (11), p.2934-2975</ispartof><rights>Copyright MIT Press Journals Nov 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-23f5381e5af87f1832157581186859b63cccedb8a8fe465f570cf8dd5054d9fe3</citedby><cites>FETCH-LOGICAL-c481t-23f5381e5af87f1832157581186859b63cccedb8a8fe465f570cf8dd5054d9fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/NECO_a_00502$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54009,54010</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23895050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moioli, Renan C</creatorcontrib><creatorcontrib>Husbands, Phil</creatorcontrib><title>Neuronal Assembly Dynamics in Supervised and Unsupervised Learning Scenarios</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>The dynamic formation of groups of neurons—neuronal assemblies—is believed to mediate cognitive phenomena at many levels, but their detailed operation and mechanisms of interaction are still to be uncovered. One hypothesis suggests that synchronized oscillations underpin their formation and functioning, with a focus on the temporal structure of neuronal signals. In this context, we investigate neuronal assembly dynamics in two complementary scenarios: the first, a supervised spike pattern classification task, in which noisy variations of a collection of spikes have to be correctly labeled; the second, an unsupervised, minimally cognitive evolutionary robotics tasks, in which an evolved agent has to cope with multiple, possibly conflicting, objectives. In both cases, the more traditional dynamical analysis of the system's variables is paired with information-theoretic techniques in order to get a broader picture of the ongoing interactions with and within the network. The neural network model is inspired by the Kuramoto model of coupled phase oscillators and allows one to fine-tune the network synchronization dynamics and assembly configuration. The experiments explore the computational power, redundancy, and generalization capability of neuronal circuits, demonstrating that performance depends nonlinearly on the number of assemblies and neurons in the network and showing that the framework can be exploited to generate minimally cognitive behaviors, with dynamic assembly formation accounting for varying degrees of stimuli modulation of the sensorimotor interactions.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Assembly</subject><subject>Brain - physiology</subject><subject>Cognition & reasoning</subject><subject>Humans</subject><subject>Information theory</subject><subject>Learning - physiology</subject><subject>Letters</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Robotics</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0UFLHDEUB_AgLbpde_MsA714cGpeMplJjsuqtbDoQYXeQjbzIpGZzJo4wvbTN7raLsWDEAiEX_7v8R4hB0C_A9Ts5PJsfqWNplRQtkMmIDgtpZS_PpEJlUqVTV03e-RLSveU0hqo2CV7jEsl8ocJWVziGIdgumKWEvbLbl2croPpvU2FD8X1uML45BO2hQltcRvSv4cFmhh8uCuuLQYT_ZD2yWdnuoRfX-8puT0_u5lflIurHz_ns0VpKwmPJeNOcAkojJONA8kZiEZIAFlLoZY1t9Ziu5RGOqxq4URDrZNtmzuuWuWQT8nRJncVh4cR06PufbLYdSbgMCYNlaq4EErwD9CKc8VVtlPy7T96P4wxj-ZFPZ88wKyON8rGIaWITq-i701ca6D6eSF6eyGZH76Gjsse27_4bQMZzDag91sFA9rhiQkPoDllAmrNKIOcr6nSv_3qBWwVOXon491-_gDeAqa9</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Moioli, Renan C</creator><creator>Husbands, Phil</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20131101</creationdate><title>Neuronal Assembly Dynamics in Supervised and Unsupervised Learning Scenarios</title><author>Moioli, Renan C ; Husbands, Phil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-23f5381e5af87f1832157581186859b63cccedb8a8fe465f570cf8dd5054d9fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Assembly</topic><topic>Brain - physiology</topic><topic>Cognition & reasoning</topic><topic>Humans</topic><topic>Information theory</topic><topic>Learning - physiology</topic><topic>Letters</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moioli, Renan C</creatorcontrib><creatorcontrib>Husbands, Phil</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moioli, Renan C</au><au>Husbands, Phil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuronal Assembly Dynamics in Supervised and Unsupervised Learning Scenarios</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>25</volume><issue>11</issue><spage>2934</spage><epage>2975</epage><pages>2934-2975</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><coden>NEUCEB</coden><abstract>The dynamic formation of groups of neurons—neuronal assemblies—is believed to mediate cognitive phenomena at many levels, but their detailed operation and mechanisms of interaction are still to be uncovered. One hypothesis suggests that synchronized oscillations underpin their formation and functioning, with a focus on the temporal structure of neuronal signals. In this context, we investigate neuronal assembly dynamics in two complementary scenarios: the first, a supervised spike pattern classification task, in which noisy variations of a collection of spikes have to be correctly labeled; the second, an unsupervised, minimally cognitive evolutionary robotics tasks, in which an evolved agent has to cope with multiple, possibly conflicting, objectives. In both cases, the more traditional dynamical analysis of the system's variables is paired with information-theoretic techniques in order to get a broader picture of the ongoing interactions with and within the network. The neural network model is inspired by the Kuramoto model of coupled phase oscillators and allows one to fine-tune the network synchronization dynamics and assembly configuration. The experiments explore the computational power, redundancy, and generalization capability of neuronal circuits, demonstrating that performance depends nonlinearly on the number of assemblies and neurons in the network and showing that the framework can be exploited to generate minimally cognitive behaviors, with dynamic assembly formation accounting for varying degrees of stimuli modulation of the sensorimotor interactions.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>23895050</pmid><doi>10.1162/NECO_a_00502</doi><tpages>42</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-7667 |
ispartof | Neural computation, 2013-11, Vol.25 (11), p.2934-2975 |
issn | 0899-7667 1530-888X |
language | eng |
recordid | cdi_proquest_miscellaneous_1494355953 |
source | MEDLINE; MIT Press Journals |
subjects | Algorithms Animals Assembly Brain - physiology Cognition & reasoning Humans Information theory Learning - physiology Letters Neural networks Neural Networks (Computer) Neurons Neurons - physiology Robotics |
title | Neuronal Assembly Dynamics in Supervised and Unsupervised Learning Scenarios |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T22%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuronal%20Assembly%20Dynamics%20in%20Supervised%20and%20Unsupervised%20Learning%20Scenarios&rft.jtitle=Neural%20computation&rft.au=Moioli,%20Renan%20C&rft.date=2013-11-01&rft.volume=25&rft.issue=11&rft.spage=2934&rft.epage=2975&rft.pages=2934-2975&rft.issn=0899-7667&rft.eissn=1530-888X&rft.coden=NEUCEB&rft_id=info:doi/10.1162/NECO_a_00502&rft_dat=%3Cproquest_cross%3E1494355953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441441000&rft_id=info:pmid/23895050&rfr_iscdi=true |