Effective Timing Error Tolerance in Flip-Flop Based Core Designs

Timing errors turn to be a great concern in nanometer technology integrated circuits. This work presents a low-cost and power efficient, multiple timing error detection and correction technique for flip-flop based core designs. Two new flip-flop designs are introduced, which exploit a transition det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic testing 2013-12, Vol.29 (6), p.795-804
Hauptverfasser: Valadimas, Stefanos, Tsiatouhas, Yiorgos, Arapoyanni, Angela, Xarchakos, Petros
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 804
container_issue 6
container_start_page 795
container_title Journal of electronic testing
container_volume 29
creator Valadimas, Stefanos
Tsiatouhas, Yiorgos
Arapoyanni, Angela
Xarchakos, Petros
description Timing errors turn to be a great concern in nanometer technology integrated circuits. This work presents a low-cost and power efficient, multiple timing error detection and correction technique for flip-flop based core designs. Two new flip-flop designs are introduced, which exploit a transition detector for timing error detection along with asynchronous local error correction schemes to provide timing error tolerance. The proposed, the Razor and the Time Dilation techniques were applied separately in the design of three versions of a 32-bit MIPS microprocessor core and the pci_bridge32 IWLS05 core, using a 90 nm CMOS technology. Comparisons based on simulation results validate the efficiency of the new design approach.
doi_str_mv 10.1007/s10836-013-5419-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1494355125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153131941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-393c72da89325684e7d19595b95be3c0ea00dffd9fed09961e602eec399bd6563</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWD9-gLeAFy_RSbLZbG5qbVUoeKnnsM3OlpTtZk1awX9vynoQQRiYy_O8M7yEXHG45QD6LnGoZMmAS6YKbpg8IhOutGSghT4mEzBCsorr4pScpbSB7AhVTsj9rG3R7fwn0qXf-n5NZzGGSJehw1j3Dqnv6bzzA5t3YaCPdcKGTkNE-oTJr_t0QU7aukt4-bPPyft8tpy-sMXb8-v0YcFcwdWOSSOdFk1dGZnvVgXqhhtl1CoPSgdYAzRt25gWGzCm5FiCQHTSmFVTqlKek5sxd4jhY49pZ7c-Oey6usewT5YXppBKcaEyev0H3YR97PN3mSo1CKkqmSk-Ui6GlCK2doh-W8cvy8EeOrVjpzZ3ag-d2oMjRidltl9j_JX8r_QN8NN3GA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1467023583</pqid></control><display><type>article</type><title>Effective Timing Error Tolerance in Flip-Flop Based Core Designs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Valadimas, Stefanos ; Tsiatouhas, Yiorgos ; Arapoyanni, Angela ; Xarchakos, Petros</creator><creatorcontrib>Valadimas, Stefanos ; Tsiatouhas, Yiorgos ; Arapoyanni, Angela ; Xarchakos, Petros</creatorcontrib><description>Timing errors turn to be a great concern in nanometer technology integrated circuits. This work presents a low-cost and power efficient, multiple timing error detection and correction technique for flip-flop based core designs. Two new flip-flop designs are introduced, which exploit a transition detector for timing error detection along with asynchronous local error correction schemes to provide timing error tolerance. The proposed, the Razor and the Time Dilation techniques were applied separately in the design of three versions of a 32-bit MIPS microprocessor core and the pci_bridge32 IWLS05 core, using a 90 nm CMOS technology. Comparisons based on simulation results validate the efficiency of the new design approach.</description><identifier>ISSN: 0923-8174</identifier><identifier>EISSN: 1573-0727</identifier><identifier>DOI: 10.1007/s10836-013-5419-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>CAE) and Design ; Circuits and Systems ; CMOS ; Computer-Aided Engineering (CAD ; Design engineering ; Electrical Engineering ; Engineering ; Fault tolerance ; Integrated circuits ; Nanotechnology ; Studies</subject><ispartof>Journal of electronic testing, 2013-12, Vol.29 (6), p.795-804</ispartof><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-393c72da89325684e7d19595b95be3c0ea00dffd9fed09961e602eec399bd6563</citedby><cites>FETCH-LOGICAL-c415t-393c72da89325684e7d19595b95be3c0ea00dffd9fed09961e602eec399bd6563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10836-013-5419-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10836-013-5419-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Valadimas, Stefanos</creatorcontrib><creatorcontrib>Tsiatouhas, Yiorgos</creatorcontrib><creatorcontrib>Arapoyanni, Angela</creatorcontrib><creatorcontrib>Xarchakos, Petros</creatorcontrib><title>Effective Timing Error Tolerance in Flip-Flop Based Core Designs</title><title>Journal of electronic testing</title><addtitle>J Electron Test</addtitle><description>Timing errors turn to be a great concern in nanometer technology integrated circuits. This work presents a low-cost and power efficient, multiple timing error detection and correction technique for flip-flop based core designs. Two new flip-flop designs are introduced, which exploit a transition detector for timing error detection along with asynchronous local error correction schemes to provide timing error tolerance. The proposed, the Razor and the Time Dilation techniques were applied separately in the design of three versions of a 32-bit MIPS microprocessor core and the pci_bridge32 IWLS05 core, using a 90 nm CMOS technology. Comparisons based on simulation results validate the efficiency of the new design approach.</description><subject>CAE) and Design</subject><subject>Circuits and Systems</subject><subject>CMOS</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Design engineering</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Fault tolerance</subject><subject>Integrated circuits</subject><subject>Nanotechnology</subject><subject>Studies</subject><issn>0923-8174</issn><issn>1573-0727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMoWD9-gLeAFy_RSbLZbG5qbVUoeKnnsM3OlpTtZk1awX9vynoQQRiYy_O8M7yEXHG45QD6LnGoZMmAS6YKbpg8IhOutGSghT4mEzBCsorr4pScpbSB7AhVTsj9rG3R7fwn0qXf-n5NZzGGSJehw1j3Dqnv6bzzA5t3YaCPdcKGTkNE-oTJr_t0QU7aukt4-bPPyft8tpy-sMXb8-v0YcFcwdWOSSOdFk1dGZnvVgXqhhtl1CoPSgdYAzRt25gWGzCm5FiCQHTSmFVTqlKek5sxd4jhY49pZ7c-Oey6usewT5YXppBKcaEyev0H3YR97PN3mSo1CKkqmSk-Ui6GlCK2doh-W8cvy8EeOrVjpzZ3ag-d2oMjRidltl9j_JX8r_QN8NN3GA</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Valadimas, Stefanos</creator><creator>Tsiatouhas, Yiorgos</creator><creator>Arapoyanni, Angela</creator><creator>Xarchakos, Petros</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>88K</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M2T</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20131201</creationdate><title>Effective Timing Error Tolerance in Flip-Flop Based Core Designs</title><author>Valadimas, Stefanos ; Tsiatouhas, Yiorgos ; Arapoyanni, Angela ; Xarchakos, Petros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-393c72da89325684e7d19595b95be3c0ea00dffd9fed09961e602eec399bd6563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>CAE) and Design</topic><topic>Circuits and Systems</topic><topic>CMOS</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Design engineering</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Fault tolerance</topic><topic>Integrated circuits</topic><topic>Nanotechnology</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valadimas, Stefanos</creatorcontrib><creatorcontrib>Tsiatouhas, Yiorgos</creatorcontrib><creatorcontrib>Arapoyanni, Angela</creatorcontrib><creatorcontrib>Xarchakos, Petros</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of electronic testing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valadimas, Stefanos</au><au>Tsiatouhas, Yiorgos</au><au>Arapoyanni, Angela</au><au>Xarchakos, Petros</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective Timing Error Tolerance in Flip-Flop Based Core Designs</atitle><jtitle>Journal of electronic testing</jtitle><stitle>J Electron Test</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>29</volume><issue>6</issue><spage>795</spage><epage>804</epage><pages>795-804</pages><issn>0923-8174</issn><eissn>1573-0727</eissn><abstract>Timing errors turn to be a great concern in nanometer technology integrated circuits. This work presents a low-cost and power efficient, multiple timing error detection and correction technique for flip-flop based core designs. Two new flip-flop designs are introduced, which exploit a transition detector for timing error detection along with asynchronous local error correction schemes to provide timing error tolerance. The proposed, the Razor and the Time Dilation techniques were applied separately in the design of three versions of a 32-bit MIPS microprocessor core and the pci_bridge32 IWLS05 core, using a 90 nm CMOS technology. Comparisons based on simulation results validate the efficiency of the new design approach.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10836-013-5419-3</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0923-8174
ispartof Journal of electronic testing, 2013-12, Vol.29 (6), p.795-804
issn 0923-8174
1573-0727
language eng
recordid cdi_proquest_miscellaneous_1494355125
source SpringerLink Journals - AutoHoldings
subjects CAE) and Design
Circuits and Systems
CMOS
Computer-Aided Engineering (CAD
Design engineering
Electrical Engineering
Engineering
Fault tolerance
Integrated circuits
Nanotechnology
Studies
title Effective Timing Error Tolerance in Flip-Flop Based Core Designs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A09%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20Timing%20Error%20Tolerance%20in%20Flip-Flop%20Based%20Core%20Designs&rft.jtitle=Journal%20of%20electronic%20testing&rft.au=Valadimas,%20Stefanos&rft.date=2013-12-01&rft.volume=29&rft.issue=6&rft.spage=795&rft.epage=804&rft.pages=795-804&rft.issn=0923-8174&rft.eissn=1573-0727&rft_id=info:doi/10.1007/s10836-013-5419-3&rft_dat=%3Cproquest_cross%3E3153131941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1467023583&rft_id=info:pmid/&rfr_iscdi=true