Blind Optimization for data Warehouse during design

Design a suitable data warehouse is getting increasingly complex and requires more advance technique for different step. In this paper, we present a novel data driven approach for fragmentation based on the principal components analysis (PCA). Both techniques has been treated in many works [2][7]. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer science and information security 2013-10, Vol.11 (10), p.27-27
Hauptverfasser: Mensouri, Rachid El, Beqali, Omar El, Elhoussaine, Ziyati
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 10
container_start_page 27
container_title International journal of computer science and information security
container_volume 11
creator Mensouri, Rachid El
Beqali, Omar El
Elhoussaine, Ziyati
description Design a suitable data warehouse is getting increasingly complex and requires more advance technique for different step. In this paper, we present a novel data driven approach for fragmentation based on the principal components analysis (PCA). Both techniques has been treated in many works [2][7]. The possibility of its use for horizontal and vertical fragmentation of data warehouses (DW), in order to reduce the time of query execution. We focus the correlation matrices, the impact of the eigenvalues evolution on the determination of suitable situations to achieve the PCA, and a study of criteria for extracting principal components. Then, we proceed to the projection of individuals on the first principal plane, and the 3D vector space generated by the first three principal components. We try to determine graphically homogeneous groups of individuals and therefore, a horizontal fragmentation schema for the studied data table. [PUBLICATION ABSTRACT]
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1494349555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1494349555</sourcerecordid><originalsourceid>FETCH-LOGICAL-p615-c9adf4b47d792e6f01d2dedef74e803576c80bb8270ab61fd991ee15933678343</originalsourceid><addsrcrecordid>eNpdjr1qwzAURkWh0JDmHQRduhgk617JGtvQPwhkCWQMsnWVKjiSa9lLn76Gduq3fMvhcG7YSlowFaIQd2xTykUsUxJQ4oqp5z4mz_fDFK_x200xJx7yyL2bHD-6kT7zXIj7eYzpzD2VeE737Da4vtDm79fs8Ppy2L5Xu_3bx_ZpVw1aYtVZ5wO0YLyxNekgpK89eQoGqBEKje4a0bZNbYRrtQzeWkkk0SqlTaNArdnjr3YY89dMZTpdY-mo712iJeokwYICi4gL-vAPveR5TEvcQukGELTW6gd2jE2P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1468454666</pqid></control><display><type>article</type><title>Blind Optimization for data Warehouse during design</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mensouri, Rachid El ; Beqali, Omar El ; Elhoussaine, Ziyati</creator><creatorcontrib>Mensouri, Rachid El ; Beqali, Omar El ; Elhoussaine, Ziyati</creatorcontrib><description>Design a suitable data warehouse is getting increasingly complex and requires more advance technique for different step. In this paper, we present a novel data driven approach for fragmentation based on the principal components analysis (PCA). Both techniques has been treated in many works [2][7]. The possibility of its use for horizontal and vertical fragmentation of data warehouses (DW), in order to reduce the time of query execution. We focus the correlation matrices, the impact of the eigenvalues evolution on the determination of suitable situations to achieve the PCA, and a study of criteria for extracting principal components. Then, we proceed to the projection of individuals on the first principal plane, and the 3D vector space generated by the first three principal components. We try to determine graphically homogeneous groups of individuals and therefore, a horizontal fragmentation schema for the studied data table. [PUBLICATION ABSTRACT]</description><identifier>EISSN: 1947-5500</identifier><language>eng</language><publisher>Pittsburgh: L J S Publishing</publisher><subject>Algorithms ; Blinds ; Data warehouses ; Optimization techniques ; Principal components analysis ; Variables</subject><ispartof>International journal of computer science and information security, 2013-10, Vol.11 (10), p.27-27</ispartof><rights>Copyright L J S Publishing Oct 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Mensouri, Rachid El</creatorcontrib><creatorcontrib>Beqali, Omar El</creatorcontrib><creatorcontrib>Elhoussaine, Ziyati</creatorcontrib><title>Blind Optimization for data Warehouse during design</title><title>International journal of computer science and information security</title><description>Design a suitable data warehouse is getting increasingly complex and requires more advance technique for different step. In this paper, we present a novel data driven approach for fragmentation based on the principal components analysis (PCA). Both techniques has been treated in many works [2][7]. The possibility of its use for horizontal and vertical fragmentation of data warehouses (DW), in order to reduce the time of query execution. We focus the correlation matrices, the impact of the eigenvalues evolution on the determination of suitable situations to achieve the PCA, and a study of criteria for extracting principal components. Then, we proceed to the projection of individuals on the first principal plane, and the 3D vector space generated by the first three principal components. We try to determine graphically homogeneous groups of individuals and therefore, a horizontal fragmentation schema for the studied data table. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Blinds</subject><subject>Data warehouses</subject><subject>Optimization techniques</subject><subject>Principal components analysis</subject><subject>Variables</subject><issn>1947-5500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdjr1qwzAURkWh0JDmHQRduhgk617JGtvQPwhkCWQMsnWVKjiSa9lLn76Gduq3fMvhcG7YSlowFaIQd2xTykUsUxJQ4oqp5z4mz_fDFK_x200xJx7yyL2bHD-6kT7zXIj7eYzpzD2VeE737Da4vtDm79fs8Ppy2L5Xu_3bx_ZpVw1aYtVZ5wO0YLyxNekgpK89eQoGqBEKje4a0bZNbYRrtQzeWkkk0SqlTaNArdnjr3YY89dMZTpdY-mo712iJeokwYICi4gL-vAPveR5TEvcQukGELTW6gd2jE2P</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Mensouri, Rachid El</creator><creator>Beqali, Omar El</creator><creator>Elhoussaine, Ziyati</creator><general>L J S Publishing</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20131001</creationdate><title>Blind Optimization for data Warehouse during design</title><author>Mensouri, Rachid El ; Beqali, Omar El ; Elhoussaine, Ziyati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p615-c9adf4b47d792e6f01d2dedef74e803576c80bb8270ab61fd991ee15933678343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Blinds</topic><topic>Data warehouses</topic><topic>Optimization techniques</topic><topic>Principal components analysis</topic><topic>Variables</topic><toplevel>online_resources</toplevel><creatorcontrib>Mensouri, Rachid El</creatorcontrib><creatorcontrib>Beqali, Omar El</creatorcontrib><creatorcontrib>Elhoussaine, Ziyati</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of computer science and information security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mensouri, Rachid El</au><au>Beqali, Omar El</au><au>Elhoussaine, Ziyati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind Optimization for data Warehouse during design</atitle><jtitle>International journal of computer science and information security</jtitle><date>2013-10-01</date><risdate>2013</risdate><volume>11</volume><issue>10</issue><spage>27</spage><epage>27</epage><pages>27-27</pages><eissn>1947-5500</eissn><abstract>Design a suitable data warehouse is getting increasingly complex and requires more advance technique for different step. In this paper, we present a novel data driven approach for fragmentation based on the principal components analysis (PCA). Both techniques has been treated in many works [2][7]. The possibility of its use for horizontal and vertical fragmentation of data warehouses (DW), in order to reduce the time of query execution. We focus the correlation matrices, the impact of the eigenvalues evolution on the determination of suitable situations to achieve the PCA, and a study of criteria for extracting principal components. Then, we proceed to the projection of individuals on the first principal plane, and the 3D vector space generated by the first three principal components. We try to determine graphically homogeneous groups of individuals and therefore, a horizontal fragmentation schema for the studied data table. [PUBLICATION ABSTRACT]</abstract><cop>Pittsburgh</cop><pub>L J S Publishing</pub><tpages>1</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1947-5500
ispartof International journal of computer science and information security, 2013-10, Vol.11 (10), p.27-27
issn 1947-5500
language eng
recordid cdi_proquest_miscellaneous_1494349555
source EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Blinds
Data warehouses
Optimization techniques
Principal components analysis
Variables
title Blind Optimization for data Warehouse during design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A00%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20Optimization%20for%20data%20Warehouse%20during%20design&rft.jtitle=International%20journal%20of%20computer%20science%20and%20information%20security&rft.au=Mensouri,%20Rachid%20El&rft.date=2013-10-01&rft.volume=11&rft.issue=10&rft.spage=27&rft.epage=27&rft.pages=27-27&rft.eissn=1947-5500&rft_id=info:doi/&rft_dat=%3Cproquest%3E1494349555%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1468454666&rft_id=info:pmid/&rfr_iscdi=true