Propagation speed of the maximum of the fundamental solution to the fractional diffusion–wave equation

In this paper, the one-dimensional time-fractional diffusion–wave equation with the fractional derivative of order α,1

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2013-09, Vol.66 (5), p.774-784
Hauptverfasser: Luchko, Yuri, Mainardi, Francesco, Povstenko, Yuriy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 784
container_issue 5
container_start_page 774
container_title Computers & mathematics with applications (1987)
container_volume 66
creator Luchko, Yuri
Mainardi, Francesco
Povstenko, Yuriy
description In this paper, the one-dimensional time-fractional diffusion–wave equation with the fractional derivative of order α,1
doi_str_mv 10.1016/j.camwa.2013.01.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1494349354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122113000229</els_id><sourcerecordid>1494349354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-7f916cd41b70bcbf10813c2000bd8028b15ce4f1a60f1a816e38e825fe6188613</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIXcMmRS8JunKTugQOqeEmV4ABny3HW1FUSt3ZS4MY_8Id8CWkLVy67O5qd0e4wdo6QIGBxuUy0at5UkgLyBDAByA_YCMWEx5OiEIdsBGIqYkxTPGYnISwBIOMpjNjiybuVelWddW0UVkRV5EzULShq1Ltt-uYPmr6tVENtp-oouLrfCTq357zSWzxQlTWmD8P8_fn1pjYU0brfmZ-yI6PqQGe_fcxebm-eZ_fx_PHuYXY9jzUX2MUTM8VCVxmWEyh1aRAEcp0O95aVgFSUmGvKDKoChiKwIC5IpLmhAoUokI_Zxd535d26p9DJxgZNda1acn2QmE0znk15ng2rfL-qvQvBk5ErbxvlPySC3OYql3KXq9zmKgHlkOugutqraPhiY8nLoC21mirrSXeycvZf_Q9L84Rp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1494349354</pqid></control><display><type>article</type><title>Propagation speed of the maximum of the fundamental solution to the fractional diffusion–wave equation</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB Electronic Journals Library</source><creator>Luchko, Yuri ; Mainardi, Francesco ; Povstenko, Yuriy</creator><creatorcontrib>Luchko, Yuri ; Mainardi, Francesco ; Povstenko, Yuriy</creatorcontrib><description>In this paper, the one-dimensional time-fractional diffusion–wave equation with the fractional derivative of order α,1&lt;α&lt;2, is revisited. This equation interpolates between the diffusion and the wave equations that behave quite differently regarding their response to a localized disturbance: whereas the diffusion equation describes a process, where a disturbance spreads infinitely fast, the propagation speed of the disturbance is a constant for the wave equation. For the time-fractional diffusion–wave equation, the propagation speed of a disturbance is infinite, but its fundamental solution possesses a maximum that disperses with a finite speed. In this paper, the fundamental solution of the Cauchy problem for the time-fractional diffusion–wave equation, its maximum location, maximum value, and other important characteristics are investigated in detail. To illustrate analytical formulas, results of numerical calculations and plots are presented. Numerical algorithms and programs used to produce plots are discussed.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2013.01.005</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Cauchy problem ; Derivatives ; Fundamental solution ; Mainardi function ; Mittag-Leffler function ; Time-fractional diffusion–wave equation ; Wright function</subject><ispartof>Computers &amp; mathematics with applications (1987), 2013-09, Vol.66 (5), p.774-784</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-7f916cd41b70bcbf10813c2000bd8028b15ce4f1a60f1a816e38e825fe6188613</citedby><cites>FETCH-LOGICAL-c381t-7f916cd41b70bcbf10813c2000bd8028b15ce4f1a60f1a816e38e825fe6188613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0898122113000229$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Luchko, Yuri</creatorcontrib><creatorcontrib>Mainardi, Francesco</creatorcontrib><creatorcontrib>Povstenko, Yuriy</creatorcontrib><title>Propagation speed of the maximum of the fundamental solution to the fractional diffusion–wave equation</title><title>Computers &amp; mathematics with applications (1987)</title><description>In this paper, the one-dimensional time-fractional diffusion–wave equation with the fractional derivative of order α,1&lt;α&lt;2, is revisited. This equation interpolates between the diffusion and the wave equations that behave quite differently regarding their response to a localized disturbance: whereas the diffusion equation describes a process, where a disturbance spreads infinitely fast, the propagation speed of the disturbance is a constant for the wave equation. For the time-fractional diffusion–wave equation, the propagation speed of a disturbance is infinite, but its fundamental solution possesses a maximum that disperses with a finite speed. In this paper, the fundamental solution of the Cauchy problem for the time-fractional diffusion–wave equation, its maximum location, maximum value, and other important characteristics are investigated in detail. To illustrate analytical formulas, results of numerical calculations and plots are presented. Numerical algorithms and programs used to produce plots are discussed.</description><subject>Cauchy problem</subject><subject>Derivatives</subject><subject>Fundamental solution</subject><subject>Mainardi function</subject><subject>Mittag-Leffler function</subject><subject>Time-fractional diffusion–wave equation</subject><subject>Wright function</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIXcMmRS8JunKTugQOqeEmV4ABny3HW1FUSt3ZS4MY_8Id8CWkLVy67O5qd0e4wdo6QIGBxuUy0at5UkgLyBDAByA_YCMWEx5OiEIdsBGIqYkxTPGYnISwBIOMpjNjiybuVelWddW0UVkRV5EzULShq1Ltt-uYPmr6tVENtp-oouLrfCTq357zSWzxQlTWmD8P8_fn1pjYU0brfmZ-yI6PqQGe_fcxebm-eZ_fx_PHuYXY9jzUX2MUTM8VCVxmWEyh1aRAEcp0O95aVgFSUmGvKDKoChiKwIC5IpLmhAoUokI_Zxd535d26p9DJxgZNda1acn2QmE0znk15ng2rfL-qvQvBk5ErbxvlPySC3OYql3KXq9zmKgHlkOugutqraPhiY8nLoC21mirrSXeycvZf_Q9L84Rp</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Luchko, Yuri</creator><creator>Mainardi, Francesco</creator><creator>Povstenko, Yuriy</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201309</creationdate><title>Propagation speed of the maximum of the fundamental solution to the fractional diffusion–wave equation</title><author>Luchko, Yuri ; Mainardi, Francesco ; Povstenko, Yuriy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-7f916cd41b70bcbf10813c2000bd8028b15ce4f1a60f1a816e38e825fe6188613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cauchy problem</topic><topic>Derivatives</topic><topic>Fundamental solution</topic><topic>Mainardi function</topic><topic>Mittag-Leffler function</topic><topic>Time-fractional diffusion–wave equation</topic><topic>Wright function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luchko, Yuri</creatorcontrib><creatorcontrib>Mainardi, Francesco</creatorcontrib><creatorcontrib>Povstenko, Yuriy</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luchko, Yuri</au><au>Mainardi, Francesco</au><au>Povstenko, Yuriy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propagation speed of the maximum of the fundamental solution to the fractional diffusion–wave equation</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2013-09</date><risdate>2013</risdate><volume>66</volume><issue>5</issue><spage>774</spage><epage>784</epage><pages>774-784</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper, the one-dimensional time-fractional diffusion–wave equation with the fractional derivative of order α,1&lt;α&lt;2, is revisited. This equation interpolates between the diffusion and the wave equations that behave quite differently regarding their response to a localized disturbance: whereas the diffusion equation describes a process, where a disturbance spreads infinitely fast, the propagation speed of the disturbance is a constant for the wave equation. For the time-fractional diffusion–wave equation, the propagation speed of a disturbance is infinite, but its fundamental solution possesses a maximum that disperses with a finite speed. In this paper, the fundamental solution of the Cauchy problem for the time-fractional diffusion–wave equation, its maximum location, maximum value, and other important characteristics are investigated in detail. To illustrate analytical formulas, results of numerical calculations and plots are presented. Numerical algorithms and programs used to produce plots are discussed.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2013.01.005</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2013-09, Vol.66 (5), p.774-784
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_1494349354
source Elsevier ScienceDirect Journals Complete; EZB Electronic Journals Library
subjects Cauchy problem
Derivatives
Fundamental solution
Mainardi function
Mittag-Leffler function
Time-fractional diffusion–wave equation
Wright function
title Propagation speed of the maximum of the fundamental solution to the fractional diffusion–wave equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A35%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propagation%20speed%20of%20the%20maximum%20of%20the%20fundamental%20solution%20to%20the%20fractional%20diffusion%E2%80%93wave%20equation&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Luchko,%20Yuri&rft.date=2013-09&rft.volume=66&rft.issue=5&rft.spage=774&rft.epage=784&rft.pages=774-784&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2013.01.005&rft_dat=%3Cproquest_cross%3E1494349354%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1494349354&rft_id=info:pmid/&rft_els_id=S0898122113000229&rfr_iscdi=true