Robust loop closing over time for pose graph SLAM
Long-term autonomous mobile robot operation requires considering place recognition decisions with great caution. A single incorrect decision that is not detected and reconsidered can corrupt the environment model that the robot is trying to build and maintain. This work describes a consensus-based a...
Gespeichert in:
Veröffentlicht in: | The International journal of robotics research 2013-12, Vol.32 (14), p.1611-1626 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1626 |
---|---|
container_issue | 14 |
container_start_page | 1611 |
container_title | The International journal of robotics research |
container_volume | 32 |
creator | Latif, Yasir Cadena, César Neira, José |
description | Long-term autonomous mobile robot operation requires considering place recognition decisions with great caution. A single incorrect decision that is not detected and reconsidered can corrupt the environment model that the robot is trying to build and maintain. This work describes a consensus-based approach to robust place recognition over time, that takes into account all the available information to detect and remove past incorrect loop closures. The main novelties of our work are: (1) the ability of realizing that, in light of new evidence, an incorrect past loop closing decision has been made; the incorrect information can be removed thus recovering the correct estimation with a novel algorithm; (2) extending our proposal to incremental operation; and (3) handling multi-session, spatially related or unrelated scenarios in a unified manner. We demonstrate our proposal, the RRR algorithm, on different odometry systems, e.g. visual or laser, using different front-end loop-closing techniques. For our experiments we use the efficient graph optimization framework g2o as back-end. We back our claims up with several experiments carried out on real data, in single and multi-session experiments showing better results than those obtained by state-of-the-art methods, comparisons against whom are also presented. |
doi_str_mv | 10.1177/0278364913498910 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1494340854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0278364913498910</sage_id><sourcerecordid>3182309811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-7c3219f983a091e031b929ee93ca7a386da1293274957dc657a1b19a68d2b7093</originalsourceid><addsrcrecordid>eNp1kM1LxDAUxIMouK7ePQa8eKm-l6RJ33FZ_IIVwY9zSbPp2qW7qUkr-N_bZT2I4GkO85thGMbOEa4QjbkGYQqpFaFUVBDCAZugUZhJNPqQTXZ2tvOP2UlKawCQGmjC8DlUQ-p5G0LHXRtSs13x8Okj75uN53WIvAvJ81W03Tt_WcweT9lRbdvkz350yt5ub17n99ni6e5hPltkTuXQZ8ZJgVRTIS0QepBYkSDvSTprrCz00qIgKYyi3Cydzo3FCsnqYikqAySn7HLf28XwMfjUl5smOd-2duvDkEpUpKSCIlcjevEHXYchbsd1I2VMrkkgjBTsKRdDStHXZRebjY1fJUK5-7D8--EYyfaRZFf-V-l__DcVnG0d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1477569210</pqid></control><display><type>article</type><title>Robust loop closing over time for pose graph SLAM</title><source>SAGE Complete A-Z List</source><creator>Latif, Yasir ; Cadena, César ; Neira, José</creator><creatorcontrib>Latif, Yasir ; Cadena, César ; Neira, José</creatorcontrib><description>Long-term autonomous mobile robot operation requires considering place recognition decisions with great caution. A single incorrect decision that is not detected and reconsidered can corrupt the environment model that the robot is trying to build and maintain. This work describes a consensus-based approach to robust place recognition over time, that takes into account all the available information to detect and remove past incorrect loop closures. The main novelties of our work are: (1) the ability of realizing that, in light of new evidence, an incorrect past loop closing decision has been made; the incorrect information can be removed thus recovering the correct estimation with a novel algorithm; (2) extending our proposal to incremental operation; and (3) handling multi-session, spatially related or unrelated scenarios in a unified manner. We demonstrate our proposal, the RRR algorithm, on different odometry systems, e.g. visual or laser, using different front-end loop-closing techniques. For our experiments we use the efficient graph optimization framework g2o as back-end. We back our claims up with several experiments carried out on real data, in single and multi-session experiments showing better results than those obtained by state-of-the-art methods, comparisons against whom are also presented.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/0278364913498910</identifier><identifier>CODEN: IJRREL</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Closed loop systems ; Estimating techniques ; Experiments ; Optimization ; Robotics ; Robots</subject><ispartof>The International journal of robotics research, 2013-12, Vol.32 (14), p.1611-1626</ispartof><rights>The Author(s) 2013</rights><rights>Copyright SAGE PUBLICATIONS, INC. Dec 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-7c3219f983a091e031b929ee93ca7a386da1293274957dc657a1b19a68d2b7093</citedby><cites>FETCH-LOGICAL-c450t-7c3219f983a091e031b929ee93ca7a386da1293274957dc657a1b19a68d2b7093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0278364913498910$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0278364913498910$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21817,27922,27923,43619,43620</link.rule.ids></links><search><creatorcontrib>Latif, Yasir</creatorcontrib><creatorcontrib>Cadena, César</creatorcontrib><creatorcontrib>Neira, José</creatorcontrib><title>Robust loop closing over time for pose graph SLAM</title><title>The International journal of robotics research</title><description>Long-term autonomous mobile robot operation requires considering place recognition decisions with great caution. A single incorrect decision that is not detected and reconsidered can corrupt the environment model that the robot is trying to build and maintain. This work describes a consensus-based approach to robust place recognition over time, that takes into account all the available information to detect and remove past incorrect loop closures. The main novelties of our work are: (1) the ability of realizing that, in light of new evidence, an incorrect past loop closing decision has been made; the incorrect information can be removed thus recovering the correct estimation with a novel algorithm; (2) extending our proposal to incremental operation; and (3) handling multi-session, spatially related or unrelated scenarios in a unified manner. We demonstrate our proposal, the RRR algorithm, on different odometry systems, e.g. visual or laser, using different front-end loop-closing techniques. For our experiments we use the efficient graph optimization framework g2o as back-end. We back our claims up with several experiments carried out on real data, in single and multi-session experiments showing better results than those obtained by state-of-the-art methods, comparisons against whom are also presented.</description><subject>Algorithms</subject><subject>Closed loop systems</subject><subject>Estimating techniques</subject><subject>Experiments</subject><subject>Optimization</subject><subject>Robotics</subject><subject>Robots</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAUxIMouK7ePQa8eKm-l6RJ33FZ_IIVwY9zSbPp2qW7qUkr-N_bZT2I4GkO85thGMbOEa4QjbkGYQqpFaFUVBDCAZugUZhJNPqQTXZ2tvOP2UlKawCQGmjC8DlUQ-p5G0LHXRtSs13x8Okj75uN53WIvAvJ81W03Tt_WcweT9lRbdvkz350yt5ub17n99ni6e5hPltkTuXQZ8ZJgVRTIS0QepBYkSDvSTprrCz00qIgKYyi3Cydzo3FCsnqYikqAySn7HLf28XwMfjUl5smOd-2duvDkEpUpKSCIlcjevEHXYchbsd1I2VMrkkgjBTsKRdDStHXZRebjY1fJUK5-7D8--EYyfaRZFf-V-l__DcVnG0d</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Latif, Yasir</creator><creator>Cadena, César</creator><creator>Neira, José</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20131201</creationdate><title>Robust loop closing over time for pose graph SLAM</title><author>Latif, Yasir ; Cadena, César ; Neira, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-7c3219f983a091e031b929ee93ca7a386da1293274957dc657a1b19a68d2b7093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Closed loop systems</topic><topic>Estimating techniques</topic><topic>Experiments</topic><topic>Optimization</topic><topic>Robotics</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Latif, Yasir</creatorcontrib><creatorcontrib>Cadena, César</creatorcontrib><creatorcontrib>Neira, José</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Latif, Yasir</au><au>Cadena, César</au><au>Neira, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust loop closing over time for pose graph SLAM</atitle><jtitle>The International journal of robotics research</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>32</volume><issue>14</issue><spage>1611</spage><epage>1626</epage><pages>1611-1626</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><coden>IJRREL</coden><abstract>Long-term autonomous mobile robot operation requires considering place recognition decisions with great caution. A single incorrect decision that is not detected and reconsidered can corrupt the environment model that the robot is trying to build and maintain. This work describes a consensus-based approach to robust place recognition over time, that takes into account all the available information to detect and remove past incorrect loop closures. The main novelties of our work are: (1) the ability of realizing that, in light of new evidence, an incorrect past loop closing decision has been made; the incorrect information can be removed thus recovering the correct estimation with a novel algorithm; (2) extending our proposal to incremental operation; and (3) handling multi-session, spatially related or unrelated scenarios in a unified manner. We demonstrate our proposal, the RRR algorithm, on different odometry systems, e.g. visual or laser, using different front-end loop-closing techniques. For our experiments we use the efficient graph optimization framework g2o as back-end. We back our claims up with several experiments carried out on real data, in single and multi-session experiments showing better results than those obtained by state-of-the-art methods, comparisons against whom are also presented.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0278364913498910</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-3649 |
ispartof | The International journal of robotics research, 2013-12, Vol.32 (14), p.1611-1626 |
issn | 0278-3649 1741-3176 |
language | eng |
recordid | cdi_proquest_miscellaneous_1494340854 |
source | SAGE Complete A-Z List |
subjects | Algorithms Closed loop systems Estimating techniques Experiments Optimization Robotics Robots |
title | Robust loop closing over time for pose graph SLAM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A35%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20loop%20closing%20over%20time%20for%20pose%20graph%20SLAM&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Latif,%20Yasir&rft.date=2013-12-01&rft.volume=32&rft.issue=14&rft.spage=1611&rft.epage=1626&rft.pages=1611-1626&rft.issn=0278-3649&rft.eissn=1741-3176&rft.coden=IJRREL&rft_id=info:doi/10.1177/0278364913498910&rft_dat=%3Cproquest_cross%3E3182309811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1477569210&rft_id=info:pmid/&rft_sage_id=10.1177_0278364913498910&rfr_iscdi=true |