Interface structure and work function of W-Cu interfaces

First principles calculation reveals that W-Cu interfaces have high interface strength when the number of overlayers is less than 2, and that (111)Cu/(110)W and (110)Cu/(110)W interfaces with one overlayer are both energetically favorable with big negative interface energies. Calculation also shows...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2013-11, Vol.103 (21)
Hauptverfasser: Liang, C. P., Fan, J. L., Gong, H. R., Liao, Xiangke, Zhu, Xiaoqian, Peng, Shaoliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Applied physics letters
container_volume 103
creator Liang, C. P.
Fan, J. L.
Gong, H. R.
Liao, Xiangke
Zhu, Xiaoqian
Peng, Shaoliang
description First principles calculation reveals that W-Cu interfaces have high interface strength when the number of overlayers is less than 2, and that (111)Cu/(110)W and (110)Cu/(110)W interfaces with one overlayer are both energetically favorable with big negative interface energies. Calculation also shows that negative interface energy serves as the driving force for interdiffusion and alloying of immiscible W and Cu, and that interface orientation fundamentally induces different behaviors of work functions of W-Cu interfaces. The calculated results agree well with experimental observations, and clarify two experimental controversies regarding interface stability and work function of W-Cu interfaces in the literature.
doi_str_mv 10.1063/1.4833249
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1494334518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2129509506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-2c398acec8698cb0e2dbc05c4f2856261a0abc356c68cbbe84fb738c7fbcf4d53</originalsourceid><addsrcrecordid>eNpd0MFKAzEQBuAgCtbqwTcIeNHD1iSTZLNHKVYLBS-Kx5CdJrC13a3JBvHtjbRehIFhmI9h-Am55mzGmYZ7PpMGQMjmhEw4q-sKODenZMIYg0o3ip-Ti5Q2ZVQCYELMsh99DA49TWPMOOboqevX9GuIHzTkHsdu6OkQ6Hs1z7T70-mSnAW3Tf7q2KfkbfH4On-uVi9Py_nDqkIQaqwEQmOKR6Mbgy3zYt0iUyiDMEoLzR1zLYLSqMu69UaGtgaDdWgxyLWCKbk93N3H4TP7NNpdl9Bvt673Q06Wy0YCSMVNoTf_6GbIsS_fWcFFo1gpXdTdQWEcUoo-2H3sdi5-W87sb4aW22OG8APoVGJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129509506</pqid></control><display><type>article</type><title>Interface structure and work function of W-Cu interfaces</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Liang, C. P. ; Fan, J. L. ; Gong, H. R. ; Liao, Xiangke ; Zhu, Xiaoqian ; Peng, Shaoliang</creator><creatorcontrib>Liang, C. P. ; Fan, J. L. ; Gong, H. R. ; Liao, Xiangke ; Zhu, Xiaoqian ; Peng, Shaoliang</creatorcontrib><description>First principles calculation reveals that W-Cu interfaces have high interface strength when the number of overlayers is less than 2, and that (111)Cu/(110)W and (110)Cu/(110)W interfaces with one overlayer are both energetically favorable with big negative interface energies. Calculation also shows that negative interface energy serves as the driving force for interdiffusion and alloying of immiscible W and Cu, and that interface orientation fundamentally induces different behaviors of work functions of W-Cu interfaces. The calculated results agree well with experimental observations, and clarify two experimental controversies regarding interface stability and work function of W-Cu interfaces in the literature.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4833249</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Alloying ; Applied physics ; First principles ; Interdiffusion ; Interface stability ; Interfacial strength ; Mathematical analysis ; Work functions</subject><ispartof>Applied physics letters, 2013-11, Vol.103 (21)</ispartof><rights>2013 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-2c398acec8698cb0e2dbc05c4f2856261a0abc356c68cbbe84fb738c7fbcf4d53</citedby><cites>FETCH-LOGICAL-c325t-2c398acec8698cb0e2dbc05c4f2856261a0abc356c68cbbe84fb738c7fbcf4d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Liang, C. P.</creatorcontrib><creatorcontrib>Fan, J. L.</creatorcontrib><creatorcontrib>Gong, H. R.</creatorcontrib><creatorcontrib>Liao, Xiangke</creatorcontrib><creatorcontrib>Zhu, Xiaoqian</creatorcontrib><creatorcontrib>Peng, Shaoliang</creatorcontrib><title>Interface structure and work function of W-Cu interfaces</title><title>Applied physics letters</title><description>First principles calculation reveals that W-Cu interfaces have high interface strength when the number of overlayers is less than 2, and that (111)Cu/(110)W and (110)Cu/(110)W interfaces with one overlayer are both energetically favorable with big negative interface energies. Calculation also shows that negative interface energy serves as the driving force for interdiffusion and alloying of immiscible W and Cu, and that interface orientation fundamentally induces different behaviors of work functions of W-Cu interfaces. The calculated results agree well with experimental observations, and clarify two experimental controversies regarding interface stability and work function of W-Cu interfaces in the literature.</description><subject>Alloying</subject><subject>Applied physics</subject><subject>First principles</subject><subject>Interdiffusion</subject><subject>Interface stability</subject><subject>Interfacial strength</subject><subject>Mathematical analysis</subject><subject>Work functions</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpd0MFKAzEQBuAgCtbqwTcIeNHD1iSTZLNHKVYLBS-Kx5CdJrC13a3JBvHtjbRehIFhmI9h-Am55mzGmYZ7PpMGQMjmhEw4q-sKODenZMIYg0o3ip-Ti5Q2ZVQCYELMsh99DA49TWPMOOboqevX9GuIHzTkHsdu6OkQ6Hs1z7T70-mSnAW3Tf7q2KfkbfH4On-uVi9Py_nDqkIQaqwEQmOKR6Mbgy3zYt0iUyiDMEoLzR1zLYLSqMu69UaGtgaDdWgxyLWCKbk93N3H4TP7NNpdl9Bvt673Q06Wy0YCSMVNoTf_6GbIsS_fWcFFo1gpXdTdQWEcUoo-2H3sdi5-W87sb4aW22OG8APoVGJQ</recordid><startdate>20131118</startdate><enddate>20131118</enddate><creator>Liang, C. P.</creator><creator>Fan, J. L.</creator><creator>Gong, H. R.</creator><creator>Liao, Xiangke</creator><creator>Zhu, Xiaoqian</creator><creator>Peng, Shaoliang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7U5</scope></search><sort><creationdate>20131118</creationdate><title>Interface structure and work function of W-Cu interfaces</title><author>Liang, C. P. ; Fan, J. L. ; Gong, H. R. ; Liao, Xiangke ; Zhu, Xiaoqian ; Peng, Shaoliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-2c398acec8698cb0e2dbc05c4f2856261a0abc356c68cbbe84fb738c7fbcf4d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alloying</topic><topic>Applied physics</topic><topic>First principles</topic><topic>Interdiffusion</topic><topic>Interface stability</topic><topic>Interfacial strength</topic><topic>Mathematical analysis</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, C. P.</creatorcontrib><creatorcontrib>Fan, J. L.</creatorcontrib><creatorcontrib>Gong, H. R.</creatorcontrib><creatorcontrib>Liao, Xiangke</creatorcontrib><creatorcontrib>Zhu, Xiaoqian</creatorcontrib><creatorcontrib>Peng, Shaoliang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, C. P.</au><au>Fan, J. L.</au><au>Gong, H. R.</au><au>Liao, Xiangke</au><au>Zhu, Xiaoqian</au><au>Peng, Shaoliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface structure and work function of W-Cu interfaces</atitle><jtitle>Applied physics letters</jtitle><date>2013-11-18</date><risdate>2013</risdate><volume>103</volume><issue>21</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>First principles calculation reveals that W-Cu interfaces have high interface strength when the number of overlayers is less than 2, and that (111)Cu/(110)W and (110)Cu/(110)W interfaces with one overlayer are both energetically favorable with big negative interface energies. Calculation also shows that negative interface energy serves as the driving force for interdiffusion and alloying of immiscible W and Cu, and that interface orientation fundamentally induces different behaviors of work functions of W-Cu interfaces. The calculated results agree well with experimental observations, and clarify two experimental controversies regarding interface stability and work function of W-Cu interfaces in the literature.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4833249</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2013-11, Vol.103 (21)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_miscellaneous_1494334518
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Alloying
Applied physics
First principles
Interdiffusion
Interface stability
Interfacial strength
Mathematical analysis
Work functions
title Interface structure and work function of W-Cu interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20structure%20and%20work%20function%20of%20W-Cu%20interfaces&rft.jtitle=Applied%20physics%20letters&rft.au=Liang,%20C.%20P.&rft.date=2013-11-18&rft.volume=103&rft.issue=21&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4833249&rft_dat=%3Cproquest_cross%3E2129509506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2129509506&rft_id=info:pmid/&rfr_iscdi=true