Interface structure and work function of W-Cu interfaces
First principles calculation reveals that W-Cu interfaces have high interface strength when the number of overlayers is less than 2, and that (111)Cu/(110)W and (110)Cu/(110)W interfaces with one overlayer are both energetically favorable with big negative interface energies. Calculation also shows...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2013-11, Vol.103 (21) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 103 |
creator | Liang, C. P. Fan, J. L. Gong, H. R. Liao, Xiangke Zhu, Xiaoqian Peng, Shaoliang |
description | First principles calculation reveals that W-Cu interfaces have high interface strength when the number of overlayers is less than 2, and that (111)Cu/(110)W and (110)Cu/(110)W interfaces with one overlayer are both energetically favorable with big negative interface energies. Calculation also shows that negative interface energy serves as the driving force for interdiffusion and alloying of immiscible W and Cu, and that interface orientation fundamentally induces different behaviors of work functions of W-Cu interfaces. The calculated results agree well with experimental observations, and clarify two experimental controversies regarding interface stability and work function of W-Cu interfaces in the literature. |
doi_str_mv | 10.1063/1.4833249 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1494334518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2129509506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-2c398acec8698cb0e2dbc05c4f2856261a0abc356c68cbbe84fb738c7fbcf4d53</originalsourceid><addsrcrecordid>eNpd0MFKAzEQBuAgCtbqwTcIeNHD1iSTZLNHKVYLBS-Kx5CdJrC13a3JBvHtjbRehIFhmI9h-Am55mzGmYZ7PpMGQMjmhEw4q-sKODenZMIYg0o3ip-Ti5Q2ZVQCYELMsh99DA49TWPMOOboqevX9GuIHzTkHsdu6OkQ6Hs1z7T70-mSnAW3Tf7q2KfkbfH4On-uVi9Py_nDqkIQaqwEQmOKR6Mbgy3zYt0iUyiDMEoLzR1zLYLSqMu69UaGtgaDdWgxyLWCKbk93N3H4TP7NNpdl9Bvt673Q06Wy0YCSMVNoTf_6GbIsS_fWcFFo1gpXdTdQWEcUoo-2H3sdi5-W87sb4aW22OG8APoVGJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129509506</pqid></control><display><type>article</type><title>Interface structure and work function of W-Cu interfaces</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Liang, C. P. ; Fan, J. L. ; Gong, H. R. ; Liao, Xiangke ; Zhu, Xiaoqian ; Peng, Shaoliang</creator><creatorcontrib>Liang, C. P. ; Fan, J. L. ; Gong, H. R. ; Liao, Xiangke ; Zhu, Xiaoqian ; Peng, Shaoliang</creatorcontrib><description>First principles calculation reveals that W-Cu interfaces have high interface strength when the number of overlayers is less than 2, and that (111)Cu/(110)W and (110)Cu/(110)W interfaces with one overlayer are both energetically favorable with big negative interface energies. Calculation also shows that negative interface energy serves as the driving force for interdiffusion and alloying of immiscible W and Cu, and that interface orientation fundamentally induces different behaviors of work functions of W-Cu interfaces. The calculated results agree well with experimental observations, and clarify two experimental controversies regarding interface stability and work function of W-Cu interfaces in the literature.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4833249</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Alloying ; Applied physics ; First principles ; Interdiffusion ; Interface stability ; Interfacial strength ; Mathematical analysis ; Work functions</subject><ispartof>Applied physics letters, 2013-11, Vol.103 (21)</ispartof><rights>2013 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-2c398acec8698cb0e2dbc05c4f2856261a0abc356c68cbbe84fb738c7fbcf4d53</citedby><cites>FETCH-LOGICAL-c325t-2c398acec8698cb0e2dbc05c4f2856261a0abc356c68cbbe84fb738c7fbcf4d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Liang, C. P.</creatorcontrib><creatorcontrib>Fan, J. L.</creatorcontrib><creatorcontrib>Gong, H. R.</creatorcontrib><creatorcontrib>Liao, Xiangke</creatorcontrib><creatorcontrib>Zhu, Xiaoqian</creatorcontrib><creatorcontrib>Peng, Shaoliang</creatorcontrib><title>Interface structure and work function of W-Cu interfaces</title><title>Applied physics letters</title><description>First principles calculation reveals that W-Cu interfaces have high interface strength when the number of overlayers is less than 2, and that (111)Cu/(110)W and (110)Cu/(110)W interfaces with one overlayer are both energetically favorable with big negative interface energies. Calculation also shows that negative interface energy serves as the driving force for interdiffusion and alloying of immiscible W and Cu, and that interface orientation fundamentally induces different behaviors of work functions of W-Cu interfaces. The calculated results agree well with experimental observations, and clarify two experimental controversies regarding interface stability and work function of W-Cu interfaces in the literature.</description><subject>Alloying</subject><subject>Applied physics</subject><subject>First principles</subject><subject>Interdiffusion</subject><subject>Interface stability</subject><subject>Interfacial strength</subject><subject>Mathematical analysis</subject><subject>Work functions</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpd0MFKAzEQBuAgCtbqwTcIeNHD1iSTZLNHKVYLBS-Kx5CdJrC13a3JBvHtjbRehIFhmI9h-Am55mzGmYZ7PpMGQMjmhEw4q-sKODenZMIYg0o3ip-Ti5Q2ZVQCYELMsh99DA49TWPMOOboqevX9GuIHzTkHsdu6OkQ6Hs1z7T70-mSnAW3Tf7q2KfkbfH4On-uVi9Py_nDqkIQaqwEQmOKR6Mbgy3zYt0iUyiDMEoLzR1zLYLSqMu69UaGtgaDdWgxyLWCKbk93N3H4TP7NNpdl9Bvt673Q06Wy0YCSMVNoTf_6GbIsS_fWcFFo1gpXdTdQWEcUoo-2H3sdi5-W87sb4aW22OG8APoVGJQ</recordid><startdate>20131118</startdate><enddate>20131118</enddate><creator>Liang, C. P.</creator><creator>Fan, J. L.</creator><creator>Gong, H. R.</creator><creator>Liao, Xiangke</creator><creator>Zhu, Xiaoqian</creator><creator>Peng, Shaoliang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7U5</scope></search><sort><creationdate>20131118</creationdate><title>Interface structure and work function of W-Cu interfaces</title><author>Liang, C. P. ; Fan, J. L. ; Gong, H. R. ; Liao, Xiangke ; Zhu, Xiaoqian ; Peng, Shaoliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-2c398acec8698cb0e2dbc05c4f2856261a0abc356c68cbbe84fb738c7fbcf4d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alloying</topic><topic>Applied physics</topic><topic>First principles</topic><topic>Interdiffusion</topic><topic>Interface stability</topic><topic>Interfacial strength</topic><topic>Mathematical analysis</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, C. P.</creatorcontrib><creatorcontrib>Fan, J. L.</creatorcontrib><creatorcontrib>Gong, H. R.</creatorcontrib><creatorcontrib>Liao, Xiangke</creatorcontrib><creatorcontrib>Zhu, Xiaoqian</creatorcontrib><creatorcontrib>Peng, Shaoliang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, C. P.</au><au>Fan, J. L.</au><au>Gong, H. R.</au><au>Liao, Xiangke</au><au>Zhu, Xiaoqian</au><au>Peng, Shaoliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface structure and work function of W-Cu interfaces</atitle><jtitle>Applied physics letters</jtitle><date>2013-11-18</date><risdate>2013</risdate><volume>103</volume><issue>21</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>First principles calculation reveals that W-Cu interfaces have high interface strength when the number of overlayers is less than 2, and that (111)Cu/(110)W and (110)Cu/(110)W interfaces with one overlayer are both energetically favorable with big negative interface energies. Calculation also shows that negative interface energy serves as the driving force for interdiffusion and alloying of immiscible W and Cu, and that interface orientation fundamentally induces different behaviors of work functions of W-Cu interfaces. The calculated results agree well with experimental observations, and clarify two experimental controversies regarding interface stability and work function of W-Cu interfaces in the literature.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4833249</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2013-11, Vol.103 (21) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_miscellaneous_1494334518 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Alloying Applied physics First principles Interdiffusion Interface stability Interfacial strength Mathematical analysis Work functions |
title | Interface structure and work function of W-Cu interfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20structure%20and%20work%20function%20of%20W-Cu%20interfaces&rft.jtitle=Applied%20physics%20letters&rft.au=Liang,%20C.%20P.&rft.date=2013-11-18&rft.volume=103&rft.issue=21&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4833249&rft_dat=%3Cproquest_cross%3E2129509506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2129509506&rft_id=info:pmid/&rfr_iscdi=true |