Model-based Diagnosis of an Automotive Electric Power Generation and Storage System

This paper presents mathematical models, design and experimental validation, and calibration of a model-based diagnostic algorithm for an electric-power generation and storage automotive system, including a battery and an alternator with a rectifier and a voltage regulator. Mathematical models of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2014-01, Vol.44 (1), p.72-85
Hauptverfasser: Scacchioli, Annalisa, Rizzoni, Giorgio, Salman, Mutasim A., Weiwu Li, Onori, Simona, Xiaodong Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue 1
container_start_page 72
container_title IEEE transactions on systems, man, and cybernetics. Systems
container_volume 44
creator Scacchioli, Annalisa
Rizzoni, Giorgio
Salman, Mutasim A.
Weiwu Li
Onori, Simona
Xiaodong Zhang
description This paper presents mathematical models, design and experimental validation, and calibration of a model-based diagnostic algorithm for an electric-power generation and storage automotive system, including a battery and an alternator with a rectifier and a voltage regulator. Mathematical models of these subsystems are derived, based on the physics of processes involved as characterized by time-varying nonlinear ordinary differential equations. The diagnostic problem focuses on detection and isolation of a specific set of alternator faults, including belt slipping, rectifier fault, and voltage regulator fault. The proposed diagnostic approach is based on the generation of residuals obtained using system models and comparing predicted and measured value of selected variables, including alternator output current, field voltage, and battery voltage. An equivalent input-output alternator model, which is used in the diagnostic scheme, is also formulated and parameterized. The test bench used for calibration of thresholds of the diagnostic algorithm and overall validation process are discussed. The effectiveness of the fault diagnosis algorithm and threshold selection is experimentally demonstrated.
doi_str_mv 10.1109/TSMCC.2012.2235951
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1494324806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6423955</ieee_id><sourcerecordid>1494324806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-946c26a4eae5313fff6acc3d4fcb5fff4c3bbd4e87c7de5fcf29485999e77f803</originalsourceid><addsrcrecordid>eNpdkE9LAzEQxRdRUGq_gF4CInjZmv-7OZZaq9Ci0Hpe0uykRLabmmyVfntTW3rwNDPM7z0eL8tuCB4QgtXjYj4bjQYUEzqglAklyFl2RYks83TS89NO5GXWj_ET44SWkmF5lc1nvoYmX-oINXpyetX66CLyFukWDbedX_vOfQMaN2C64Ax69z8Q0ARaCLpzvk1cjeadD3oFaL6LHayvswurmwj94-xlH8_jxegln75NXkfDaW44LbtccWmo1Bw0CEaYtVZqY1jNrVmKdHHDlsuaQ1mYogZhjaWKl0IpBUVhS8x62cPBdxP81xZiV61dNNA0ugW_jRXhijPKSywTevcP_fTb0KZ0iSqwwEpImih6oEzwMQaw1Sa4tQ67iuBqX3X1V3W1r7o6Vp1E90drHY1ubNCtcfGkpCURmMp92tsD5wDg9JacMiUE-wX6H4cu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1470509562</pqid></control><display><type>article</type><title>Model-based Diagnosis of an Automotive Electric Power Generation and Storage System</title><source>IEEE Electronic Library (IEL)</source><creator>Scacchioli, Annalisa ; Rizzoni, Giorgio ; Salman, Mutasim A. ; Weiwu Li ; Onori, Simona ; Xiaodong Zhang</creator><creatorcontrib>Scacchioli, Annalisa ; Rizzoni, Giorgio ; Salman, Mutasim A. ; Weiwu Li ; Onori, Simona ; Xiaodong Zhang</creatorcontrib><description>This paper presents mathematical models, design and experimental validation, and calibration of a model-based diagnostic algorithm for an electric-power generation and storage automotive system, including a battery and an alternator with a rectifier and a voltage regulator. Mathematical models of these subsystems are derived, based on the physics of processes involved as characterized by time-varying nonlinear ordinary differential equations. The diagnostic problem focuses on detection and isolation of a specific set of alternator faults, including belt slipping, rectifier fault, and voltage regulator fault. The proposed diagnostic approach is based on the generation of residuals obtained using system models and comparing predicted and measured value of selected variables, including alternator output current, field voltage, and battery voltage. An equivalent input-output alternator model, which is used in the diagnostic scheme, is also formulated and parameterized. The test bench used for calibration of thresholds of the diagnostic algorithm and overall validation process are discussed. The effectiveness of the fault diagnosis algorithm and threshold selection is experimentally demonstrated.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMCC.2012.2235951</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Alternators ; Applied sciences ; Automotive ; Batteries ; Computer science; control theory; systems ; Convertors ; electric power generator ; electric power storage system ; Electrical engineering. Electrical power engineering ; Electrical machines ; electrical systems ; Exact sciences and technology ; Fault diagnosis ; Mathematical model ; Mathematical models ; Mechanical engineering. Machine design ; Memory and file management (including protection and security) ; Memory organisation. Data processing ; model-based diagnosis ; Ordinary differential equations ; Regulators ; Simulation ; Software ; Stator windings ; Voltage control</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2014-01, Vol.44 (1), p.72-85</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-946c26a4eae5313fff6acc3d4fcb5fff4c3bbd4e87c7de5fcf29485999e77f803</citedby><cites>FETCH-LOGICAL-c428t-946c26a4eae5313fff6acc3d4fcb5fff4c3bbd4e87c7de5fcf29485999e77f803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6423955$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6423955$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28150260$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Scacchioli, Annalisa</creatorcontrib><creatorcontrib>Rizzoni, Giorgio</creatorcontrib><creatorcontrib>Salman, Mutasim A.</creatorcontrib><creatorcontrib>Weiwu Li</creatorcontrib><creatorcontrib>Onori, Simona</creatorcontrib><creatorcontrib>Xiaodong Zhang</creatorcontrib><title>Model-based Diagnosis of an Automotive Electric Power Generation and Storage System</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>This paper presents mathematical models, design and experimental validation, and calibration of a model-based diagnostic algorithm for an electric-power generation and storage automotive system, including a battery and an alternator with a rectifier and a voltage regulator. Mathematical models of these subsystems are derived, based on the physics of processes involved as characterized by time-varying nonlinear ordinary differential equations. The diagnostic problem focuses on detection and isolation of a specific set of alternator faults, including belt slipping, rectifier fault, and voltage regulator fault. The proposed diagnostic approach is based on the generation of residuals obtained using system models and comparing predicted and measured value of selected variables, including alternator output current, field voltage, and battery voltage. An equivalent input-output alternator model, which is used in the diagnostic scheme, is also formulated and parameterized. The test bench used for calibration of thresholds of the diagnostic algorithm and overall validation process are discussed. The effectiveness of the fault diagnosis algorithm and threshold selection is experimentally demonstrated.</description><subject>Algorithms</subject><subject>Alternators</subject><subject>Applied sciences</subject><subject>Automotive</subject><subject>Batteries</subject><subject>Computer science; control theory; systems</subject><subject>Convertors</subject><subject>electric power generator</subject><subject>electric power storage system</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical machines</subject><subject>electrical systems</subject><subject>Exact sciences and technology</subject><subject>Fault diagnosis</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Mechanical engineering. Machine design</subject><subject>Memory and file management (including protection and security)</subject><subject>Memory organisation. Data processing</subject><subject>model-based diagnosis</subject><subject>Ordinary differential equations</subject><subject>Regulators</subject><subject>Simulation</subject><subject>Software</subject><subject>Stator windings</subject><subject>Voltage control</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE9LAzEQxRdRUGq_gF4CInjZmv-7OZZaq9Ci0Hpe0uykRLabmmyVfntTW3rwNDPM7z0eL8tuCB4QgtXjYj4bjQYUEzqglAklyFl2RYks83TS89NO5GXWj_ET44SWkmF5lc1nvoYmX-oINXpyetX66CLyFukWDbedX_vOfQMaN2C64Ax69z8Q0ARaCLpzvk1cjeadD3oFaL6LHayvswurmwj94-xlH8_jxegln75NXkfDaW44LbtccWmo1Bw0CEaYtVZqY1jNrVmKdHHDlsuaQ1mYogZhjaWKl0IpBUVhS8x62cPBdxP81xZiV61dNNA0ugW_jRXhijPKSywTevcP_fTb0KZ0iSqwwEpImih6oEzwMQaw1Sa4tQ67iuBqX3X1V3W1r7o6Vp1E90drHY1ubNCtcfGkpCURmMp92tsD5wDg9JacMiUE-wX6H4cu</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Scacchioli, Annalisa</creator><creator>Rizzoni, Giorgio</creator><creator>Salman, Mutasim A.</creator><creator>Weiwu Li</creator><creator>Onori, Simona</creator><creator>Xiaodong Zhang</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>KR7</scope></search><sort><creationdate>20140101</creationdate><title>Model-based Diagnosis of an Automotive Electric Power Generation and Storage System</title><author>Scacchioli, Annalisa ; Rizzoni, Giorgio ; Salman, Mutasim A. ; Weiwu Li ; Onori, Simona ; Xiaodong Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-946c26a4eae5313fff6acc3d4fcb5fff4c3bbd4e87c7de5fcf29485999e77f803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Alternators</topic><topic>Applied sciences</topic><topic>Automotive</topic><topic>Batteries</topic><topic>Computer science; control theory; systems</topic><topic>Convertors</topic><topic>electric power generator</topic><topic>electric power storage system</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical machines</topic><topic>electrical systems</topic><topic>Exact sciences and technology</topic><topic>Fault diagnosis</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Mechanical engineering. Machine design</topic><topic>Memory and file management (including protection and security)</topic><topic>Memory organisation. Data processing</topic><topic>model-based diagnosis</topic><topic>Ordinary differential equations</topic><topic>Regulators</topic><topic>Simulation</topic><topic>Software</topic><topic>Stator windings</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scacchioli, Annalisa</creatorcontrib><creatorcontrib>Rizzoni, Giorgio</creatorcontrib><creatorcontrib>Salman, Mutasim A.</creatorcontrib><creatorcontrib>Weiwu Li</creatorcontrib><creatorcontrib>Onori, Simona</creatorcontrib><creatorcontrib>Xiaodong Zhang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Civil Engineering Abstracts</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Scacchioli, Annalisa</au><au>Rizzoni, Giorgio</au><au>Salman, Mutasim A.</au><au>Weiwu Li</au><au>Onori, Simona</au><au>Xiaodong Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-based Diagnosis of an Automotive Electric Power Generation and Storage System</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2014-01-01</date><risdate>2014</risdate><volume>44</volume><issue>1</issue><spage>72</spage><epage>85</epage><pages>72-85</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>This paper presents mathematical models, design and experimental validation, and calibration of a model-based diagnostic algorithm for an electric-power generation and storage automotive system, including a battery and an alternator with a rectifier and a voltage regulator. Mathematical models of these subsystems are derived, based on the physics of processes involved as characterized by time-varying nonlinear ordinary differential equations. The diagnostic problem focuses on detection and isolation of a specific set of alternator faults, including belt slipping, rectifier fault, and voltage regulator fault. The proposed diagnostic approach is based on the generation of residuals obtained using system models and comparing predicted and measured value of selected variables, including alternator output current, field voltage, and battery voltage. An equivalent input-output alternator model, which is used in the diagnostic scheme, is also formulated and parameterized. The test bench used for calibration of thresholds of the diagnostic algorithm and overall validation process are discussed. The effectiveness of the fault diagnosis algorithm and threshold selection is experimentally demonstrated.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSMCC.2012.2235951</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2216
ispartof IEEE transactions on systems, man, and cybernetics. Systems, 2014-01, Vol.44 (1), p.72-85
issn 2168-2216
2168-2232
language eng
recordid cdi_proquest_miscellaneous_1494324806
source IEEE Electronic Library (IEL)
subjects Algorithms
Alternators
Applied sciences
Automotive
Batteries
Computer science
control theory
systems
Convertors
electric power generator
electric power storage system
Electrical engineering. Electrical power engineering
Electrical machines
electrical systems
Exact sciences and technology
Fault diagnosis
Mathematical model
Mathematical models
Mechanical engineering. Machine design
Memory and file management (including protection and security)
Memory organisation. Data processing
model-based diagnosis
Ordinary differential equations
Regulators
Simulation
Software
Stator windings
Voltage control
title Model-based Diagnosis of an Automotive Electric Power Generation and Storage System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T03%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-based%20Diagnosis%20of%20an%20Automotive%20Electric%20Power%20Generation%20and%20Storage%20System&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Scacchioli,%20Annalisa&rft.date=2014-01-01&rft.volume=44&rft.issue=1&rft.spage=72&rft.epage=85&rft.pages=72-85&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMCC.2012.2235951&rft_dat=%3Cproquest_RIE%3E1494324806%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1470509562&rft_id=info:pmid/&rft_ieee_id=6423955&rfr_iscdi=true