Two-Dimensional Numerical Simulation for Flow Pattern Transition of Thermal-Solutal Capillary Convection in an Annular Pool
In order to understand the transition characteristics of the thermal-solutal capillary convection in an annular pool, a series of two-dimensional numerical simulations were conducted. The bottom of the pool is adiabatic rigid wall and the top is adiabatic and non-deformable free surface. The inner a...
Gespeichert in:
Veröffentlicht in: | Microgravity science and technology 2013-12, Vol.25 (4), p.225-230 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 230 |
---|---|
container_issue | 4 |
container_start_page | 225 |
container_title | Microgravity science and technology |
container_volume | 25 |
creator | Li, You-Rong Zhou, Yong-Li Tang, Jing-Wen Gong, Zhen-Xing |
description | In order to understand the transition characteristics of the thermal-solutal capillary convection in an annular pool, a series of two-dimensional numerical simulations were conducted. The bottom of the pool is adiabatic rigid wall and the top is adiabatic and non-deformable free surface. The inner and outer cylindrical walls maintain at constant temperature and solute concentration, respectively. The thermo-capillary force is supposed to equal to the solute-capillary force, but their directions are contrary. Results show that the thermal-solutal capillary convection is steady at a small Reylonds number. When the capillary Reynolds number exceeds a critical value, the steady flow transits into unstable thermal-solutal capillary convection. The transition from the steady to oscillatory flow undergoes a Hopf bifurcation. Furthermore, the effects of the liquid layer aspect ratio, the radius ratio, the Prandtl number and the Lewis number on the onset of flow pattern transition are discussed. The physical mechanism of the unstable thermal-solutal capillary convection is also analyzed. |
doi_str_mv | 10.1007/s12217-013-9343-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1494320564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148141871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-3bb340daa28cb0c276db2a6b1ba957b7eece7c146be39fc74873f8f67294aa4c3</originalsourceid><addsrcrecordid>eNp1kU9LAzEQxYMoWKsfwFvAi5do_u1m9yjVqlC00HoO2TSrW7JJTXYt1i9v2noQwdOEmd97TOYBcE7wFcFYXEdCKREIE4ZKxhnaHIABKUSGMC_5IRjgkhVpiotjcBLjEuOcEk4H4Gu-9ui2aY2LjXfKwqe-NaHR6TVr2t6qLrVh7QMcW7-GU9V1Jjg4DyoJdjNfw_mbCa2yaOZt3yXlSK0aa1X4hCPvPozecY2DysEb55JpgFPv7Sk4qpWN5uynDsHL-G4-ekCT5_vH0c0EaU6yDrGqYhwvlKKFrrCmIl9UVOUVqVSZiUoYo43QhOeVYWWtBS8Eq4s6F7TkSnHNhuBy77sK_r03sZNtE7VJGzrj-yhJOhGjOMt5Qi_-oEvfh3SXLZVnvMRlkSeK7CkdfIzB1HIVmjb9VxIst3HIfRwyxSG3cchN0tC9JibWvZrwy_lf0Tdj7I-5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1465490986</pqid></control><display><type>article</type><title>Two-Dimensional Numerical Simulation for Flow Pattern Transition of Thermal-Solutal Capillary Convection in an Annular Pool</title><source>SpringerNature Journals</source><creator>Li, You-Rong ; Zhou, Yong-Li ; Tang, Jing-Wen ; Gong, Zhen-Xing</creator><creatorcontrib>Li, You-Rong ; Zhou, Yong-Li ; Tang, Jing-Wen ; Gong, Zhen-Xing</creatorcontrib><description>In order to understand the transition characteristics of the thermal-solutal capillary convection in an annular pool, a series of two-dimensional numerical simulations were conducted. The bottom of the pool is adiabatic rigid wall and the top is adiabatic and non-deformable free surface. The inner and outer cylindrical walls maintain at constant temperature and solute concentration, respectively. The thermo-capillary force is supposed to equal to the solute-capillary force, but their directions are contrary. Results show that the thermal-solutal capillary convection is steady at a small Reylonds number. When the capillary Reynolds number exceeds a critical value, the steady flow transits into unstable thermal-solutal capillary convection. The transition from the steady to oscillatory flow undergoes a Hopf bifurcation. Furthermore, the effects of the liquid layer aspect ratio, the radius ratio, the Prandtl number and the Lewis number on the onset of flow pattern transition are discussed. The physical mechanism of the unstable thermal-solutal capillary convection is also analyzed.</description><identifier>ISSN: 0938-0108</identifier><identifier>EISSN: 1875-0494</identifier><identifier>DOI: 10.1007/s12217-013-9343-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adiabatic flow ; Aerospace Technology and Astronautics ; Classical and Continuum Physics ; Convection ; Engineering ; Flow pattern ; Free surfaces ; Original Article ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Steady flow</subject><ispartof>Microgravity science and technology, 2013-12, Vol.25 (4), p.225-230</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-3bb340daa28cb0c276db2a6b1ba957b7eece7c146be39fc74873f8f67294aa4c3</citedby><cites>FETCH-LOGICAL-c415t-3bb340daa28cb0c276db2a6b1ba957b7eece7c146be39fc74873f8f67294aa4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12217-013-9343-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12217-013-9343-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, You-Rong</creatorcontrib><creatorcontrib>Zhou, Yong-Li</creatorcontrib><creatorcontrib>Tang, Jing-Wen</creatorcontrib><creatorcontrib>Gong, Zhen-Xing</creatorcontrib><title>Two-Dimensional Numerical Simulation for Flow Pattern Transition of Thermal-Solutal Capillary Convection in an Annular Pool</title><title>Microgravity science and technology</title><addtitle>Microgravity Sci. Technol</addtitle><description>In order to understand the transition characteristics of the thermal-solutal capillary convection in an annular pool, a series of two-dimensional numerical simulations were conducted. The bottom of the pool is adiabatic rigid wall and the top is adiabatic and non-deformable free surface. The inner and outer cylindrical walls maintain at constant temperature and solute concentration, respectively. The thermo-capillary force is supposed to equal to the solute-capillary force, but their directions are contrary. Results show that the thermal-solutal capillary convection is steady at a small Reylonds number. When the capillary Reynolds number exceeds a critical value, the steady flow transits into unstable thermal-solutal capillary convection. The transition from the steady to oscillatory flow undergoes a Hopf bifurcation. Furthermore, the effects of the liquid layer aspect ratio, the radius ratio, the Prandtl number and the Lewis number on the onset of flow pattern transition are discussed. The physical mechanism of the unstable thermal-solutal capillary convection is also analyzed.</description><subject>Adiabatic flow</subject><subject>Aerospace Technology and Astronautics</subject><subject>Classical and Continuum Physics</subject><subject>Convection</subject><subject>Engineering</subject><subject>Flow pattern</subject><subject>Free surfaces</subject><subject>Original Article</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Steady flow</subject><issn>0938-0108</issn><issn>1875-0494</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kU9LAzEQxYMoWKsfwFvAi5do_u1m9yjVqlC00HoO2TSrW7JJTXYt1i9v2noQwdOEmd97TOYBcE7wFcFYXEdCKREIE4ZKxhnaHIABKUSGMC_5IRjgkhVpiotjcBLjEuOcEk4H4Gu-9ui2aY2LjXfKwqe-NaHR6TVr2t6qLrVh7QMcW7-GU9V1Jjg4DyoJdjNfw_mbCa2yaOZt3yXlSK0aa1X4hCPvPozecY2DysEb55JpgFPv7Sk4qpWN5uynDsHL-G4-ekCT5_vH0c0EaU6yDrGqYhwvlKKFrrCmIl9UVOUVqVSZiUoYo43QhOeVYWWtBS8Eq4s6F7TkSnHNhuBy77sK_r03sZNtE7VJGzrj-yhJOhGjOMt5Qi_-oEvfh3SXLZVnvMRlkSeK7CkdfIzB1HIVmjb9VxIst3HIfRwyxSG3cchN0tC9JibWvZrwy_lf0Tdj7I-5</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Li, You-Rong</creator><creator>Zhou, Yong-Li</creator><creator>Tang, Jing-Wen</creator><creator>Gong, Zhen-Xing</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7TG</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KL.</scope><scope>L7M</scope><scope>M0S</scope><scope>M1P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20131201</creationdate><title>Two-Dimensional Numerical Simulation for Flow Pattern Transition of Thermal-Solutal Capillary Convection in an Annular Pool</title><author>Li, You-Rong ; Zhou, Yong-Li ; Tang, Jing-Wen ; Gong, Zhen-Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-3bb340daa28cb0c276db2a6b1ba957b7eece7c146be39fc74873f8f67294aa4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adiabatic flow</topic><topic>Aerospace Technology and Astronautics</topic><topic>Classical and Continuum Physics</topic><topic>Convection</topic><topic>Engineering</topic><topic>Flow pattern</topic><topic>Free surfaces</topic><topic>Original Article</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Steady flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, You-Rong</creatorcontrib><creatorcontrib>Zhou, Yong-Li</creatorcontrib><creatorcontrib>Tang, Jing-Wen</creatorcontrib><creatorcontrib>Gong, Zhen-Xing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Microgravity science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, You-Rong</au><au>Zhou, Yong-Li</au><au>Tang, Jing-Wen</au><au>Gong, Zhen-Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Dimensional Numerical Simulation for Flow Pattern Transition of Thermal-Solutal Capillary Convection in an Annular Pool</atitle><jtitle>Microgravity science and technology</jtitle><stitle>Microgravity Sci. Technol</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>25</volume><issue>4</issue><spage>225</spage><epage>230</epage><pages>225-230</pages><issn>0938-0108</issn><eissn>1875-0494</eissn><abstract>In order to understand the transition characteristics of the thermal-solutal capillary convection in an annular pool, a series of two-dimensional numerical simulations were conducted. The bottom of the pool is adiabatic rigid wall and the top is adiabatic and non-deformable free surface. The inner and outer cylindrical walls maintain at constant temperature and solute concentration, respectively. The thermo-capillary force is supposed to equal to the solute-capillary force, but their directions are contrary. Results show that the thermal-solutal capillary convection is steady at a small Reylonds number. When the capillary Reynolds number exceeds a critical value, the steady flow transits into unstable thermal-solutal capillary convection. The transition from the steady to oscillatory flow undergoes a Hopf bifurcation. Furthermore, the effects of the liquid layer aspect ratio, the radius ratio, the Prandtl number and the Lewis number on the onset of flow pattern transition are discussed. The physical mechanism of the unstable thermal-solutal capillary convection is also analyzed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12217-013-9343-z</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-0108 |
ispartof | Microgravity science and technology, 2013-12, Vol.25 (4), p.225-230 |
issn | 0938-0108 1875-0494 |
language | eng |
recordid | cdi_proquest_miscellaneous_1494320564 |
source | SpringerNature Journals |
subjects | Adiabatic flow Aerospace Technology and Astronautics Classical and Continuum Physics Convection Engineering Flow pattern Free surfaces Original Article Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Steady flow |
title | Two-Dimensional Numerical Simulation for Flow Pattern Transition of Thermal-Solutal Capillary Convection in an Annular Pool |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A52%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Dimensional%20Numerical%20Simulation%20for%20Flow%20Pattern%20Transition%20of%20Thermal-Solutal%20Capillary%20Convection%20in%20an%20Annular%20Pool&rft.jtitle=Microgravity%20science%20and%20technology&rft.au=Li,%20You-Rong&rft.date=2013-12-01&rft.volume=25&rft.issue=4&rft.spage=225&rft.epage=230&rft.pages=225-230&rft.issn=0938-0108&rft.eissn=1875-0494&rft_id=info:doi/10.1007/s12217-013-9343-z&rft_dat=%3Cproquest_cross%3E3148141871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1465490986&rft_id=info:pmid/&rfr_iscdi=true |