Plasmonic nanohelix metamaterials with tailorable giant circular dichroism

Plasmonic nanohelix arrays are shown to interact with electromagnetic fields in ways not typically seen with ordinary matter. Chiral metamaterials (CMMs) with feature sizes small with respect to the wavelength of visible light are a promising route to experimentally achieve such phenomena as negativ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2013-11, Vol.103 (21)
Hauptverfasser: Gibbs, J G, Mark, A G, Eslami, S, Fischer, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Applied physics letters
container_volume 103
creator Gibbs, J G
Mark, A G
Eslami, S
Fischer, P
description Plasmonic nanohelix arrays are shown to interact with electromagnetic fields in ways not typically seen with ordinary matter. Chiral metamaterials (CMMs) with feature sizes small with respect to the wavelength of visible light are a promising route to experimentally achieve such phenomena as negative refraction without the need for simultaneously negative ε and μ. Here we not only show that giant circular dichroism in the visible is achievable with hexagonally arranged plasmonic nanohelix arrays, but that we can precisely tune the optical activity via morphology and lattice spacing. The discrete dipole approximation is implemented to support experimental data.
doi_str_mv 10.1063/1.4829740
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1494320320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2129504538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-fa835479a307e5c178a7774d21e7e988a6e1b6ab54b6be17d8ffff45cbddc06f3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouK4e_AcFL3rommmSJj3K4icLetBzmKapmyVt1qRF_fd22T05vDC88DAMDyGXQBdAS3YLC66KSnJ6RGZApcwZgDomM0opy8tKwCk5S2kzVVEwNiMvbx5TF3pnsh77sLbe_WSdHbDDwUaHPmXfblhnAzofItbeZp8O-yEzLprRY8waZ9YxuNSdk5N24u3FYc_Jx8P9-_IpX70-Pi_vVrkpKjrkLSomuKyQUWmFAalQSsmbAqy0lVJYWqhLrAWvy9qCbFQ7DRembhpDy5bNyfX-7jaGr9GmQXcuGes99jaMSQOvOCvoLnNy9Q_dhDH203e6gKISlAumJupmT5kYUoq21dvoOoy_GqjeWdWgD1bZHzvYadQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129504538</pqid></control><display><type>article</type><title>Plasmonic nanohelix metamaterials with tailorable giant circular dichroism</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Gibbs, J G ; Mark, A G ; Eslami, S ; Fischer, P</creator><creatorcontrib>Gibbs, J G ; Mark, A G ; Eslami, S ; Fischer, P</creatorcontrib><description>Plasmonic nanohelix arrays are shown to interact with electromagnetic fields in ways not typically seen with ordinary matter. Chiral metamaterials (CMMs) with feature sizes small with respect to the wavelength of visible light are a promising route to experimentally achieve such phenomena as negative refraction without the need for simultaneously negative ε and μ. Here we not only show that giant circular dichroism in the visible is achievable with hexagonally arranged plasmonic nanohelix arrays, but that we can precisely tune the optical activity via morphology and lattice spacing. The discrete dipole approximation is implemented to support experimental data.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4829740</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Approximation ; Dichroism ; Electromagnetic fields ; Mathematical morphology ; Metamaterials ; Optical activity</subject><ispartof>Applied physics letters, 2013-11, Vol.103 (21)</ispartof><rights>2013 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-fa835479a307e5c178a7774d21e7e988a6e1b6ab54b6be17d8ffff45cbddc06f3</citedby><cites>FETCH-LOGICAL-c290t-fa835479a307e5c178a7774d21e7e988a6e1b6ab54b6be17d8ffff45cbddc06f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gibbs, J G</creatorcontrib><creatorcontrib>Mark, A G</creatorcontrib><creatorcontrib>Eslami, S</creatorcontrib><creatorcontrib>Fischer, P</creatorcontrib><title>Plasmonic nanohelix metamaterials with tailorable giant circular dichroism</title><title>Applied physics letters</title><description>Plasmonic nanohelix arrays are shown to interact with electromagnetic fields in ways not typically seen with ordinary matter. Chiral metamaterials (CMMs) with feature sizes small with respect to the wavelength of visible light are a promising route to experimentally achieve such phenomena as negative refraction without the need for simultaneously negative ε and μ. Here we not only show that giant circular dichroism in the visible is achievable with hexagonally arranged plasmonic nanohelix arrays, but that we can precisely tune the optical activity via morphology and lattice spacing. The discrete dipole approximation is implemented to support experimental data.</description><subject>Applied physics</subject><subject>Approximation</subject><subject>Dichroism</subject><subject>Electromagnetic fields</subject><subject>Mathematical morphology</subject><subject>Metamaterials</subject><subject>Optical activity</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LxDAQhoMouK4e_AcFL3rommmSJj3K4icLetBzmKapmyVt1qRF_fd22T05vDC88DAMDyGXQBdAS3YLC66KSnJ6RGZApcwZgDomM0opy8tKwCk5S2kzVVEwNiMvbx5TF3pnsh77sLbe_WSdHbDDwUaHPmXfblhnAzofItbeZp8O-yEzLprRY8waZ9YxuNSdk5N24u3FYc_Jx8P9-_IpX70-Pi_vVrkpKjrkLSomuKyQUWmFAalQSsmbAqy0lVJYWqhLrAWvy9qCbFQ7DRembhpDy5bNyfX-7jaGr9GmQXcuGes99jaMSQOvOCvoLnNy9Q_dhDH203e6gKISlAumJupmT5kYUoq21dvoOoy_GqjeWdWgD1bZHzvYadQ</recordid><startdate>20131118</startdate><enddate>20131118</enddate><creator>Gibbs, J G</creator><creator>Mark, A G</creator><creator>Eslami, S</creator><creator>Fischer, P</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7U5</scope></search><sort><creationdate>20131118</creationdate><title>Plasmonic nanohelix metamaterials with tailorable giant circular dichroism</title><author>Gibbs, J G ; Mark, A G ; Eslami, S ; Fischer, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-fa835479a307e5c178a7774d21e7e988a6e1b6ab54b6be17d8ffff45cbddc06f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied physics</topic><topic>Approximation</topic><topic>Dichroism</topic><topic>Electromagnetic fields</topic><topic>Mathematical morphology</topic><topic>Metamaterials</topic><topic>Optical activity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gibbs, J G</creatorcontrib><creatorcontrib>Mark, A G</creatorcontrib><creatorcontrib>Eslami, S</creatorcontrib><creatorcontrib>Fischer, P</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gibbs, J G</au><au>Mark, A G</au><au>Eslami, S</au><au>Fischer, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmonic nanohelix metamaterials with tailorable giant circular dichroism</atitle><jtitle>Applied physics letters</jtitle><date>2013-11-18</date><risdate>2013</risdate><volume>103</volume><issue>21</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Plasmonic nanohelix arrays are shown to interact with electromagnetic fields in ways not typically seen with ordinary matter. Chiral metamaterials (CMMs) with feature sizes small with respect to the wavelength of visible light are a promising route to experimentally achieve such phenomena as negative refraction without the need for simultaneously negative ε and μ. Here we not only show that giant circular dichroism in the visible is achievable with hexagonally arranged plasmonic nanohelix arrays, but that we can precisely tune the optical activity via morphology and lattice spacing. The discrete dipole approximation is implemented to support experimental data.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4829740</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2013-11, Vol.103 (21)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_miscellaneous_1494320320
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Applied physics
Approximation
Dichroism
Electromagnetic fields
Mathematical morphology
Metamaterials
Optical activity
title Plasmonic nanohelix metamaterials with tailorable giant circular dichroism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A29%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmonic%20nanohelix%20metamaterials%20with%20tailorable%20giant%20circular%20dichroism&rft.jtitle=Applied%20physics%20letters&rft.au=Gibbs,%20J%20G&rft.date=2013-11-18&rft.volume=103&rft.issue=21&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4829740&rft_dat=%3Cproquest_cross%3E2129504538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2129504538&rft_id=info:pmid/&rfr_iscdi=true