Forecasting neutron star temperatures: predictability and variability

It is now possible to model thermal relaxation of neutron stars after bouts of accretion during which the star is heated out of equilibrium by nuclear reactions in its crust. Major uncertainties in these models can be encapsulated in modest variations of a handful of control parameters that change t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2013-12, Vol.111 (24), p.241102-241102, Article 241102
Hauptverfasser: Page, Dany, Reddy, Sanjay
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is now possible to model thermal relaxation of neutron stars after bouts of accretion during which the star is heated out of equilibrium by nuclear reactions in its crust. Major uncertainties in these models can be encapsulated in modest variations of a handful of control parameters that change the fiducial crustal thermal conductivity, specific heat, and heating rates. Observations of thermal relaxation constrain these parameters and allow us to predict longer term variability in terms of the neutron star core temperature. We demonstrate this explicitly by modeling ongoing thermal relaxation in the neutron star XTE J1701-462. Its future cooling, over the next 5 to 30 years, is strongly constrained and depends mostly on its core temperature, uncertainties in crust physics having essentially been pinned down by fitting to the first three years of observations.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.111.241102