Orthodontic treatment for prominent lower front teeth (Class III malocclusion) in children
Background Prominent lower front teeth (termed reverse bite; under bite; Class III malocclusion) may be due to a combination of the jaw or tooth positions or both. The upper jaw (maxilla) can be too far back or the lower jaw (mandible) too far forward, or both. Prominent lower front teeth can also o...
Gespeichert in:
Veröffentlicht in: | Cochrane database of systematic reviews 2013-09, Vol.2013 (9), p.CD003451-CD003451 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
Prominent lower front teeth (termed reverse bite; under bite; Class III malocclusion) may be due to a combination of the jaw or tooth positions or both. The upper jaw (maxilla) can be too far back or the lower jaw (mandible) too far forward, or both. Prominent lower front teeth can also occur if the upper front teeth (incisors) are tipped back or the lower front teeth are tipped forwards, or both. Various treatment approaches have been described to correct prominent lower front teeth in children and adolescents.
Objectives
To assess the effects of orthodontic treatment for prominent lower front teeth in children and adolescents.
Search methods
We searched the following databases: Cochrane Oral Health Group's Trials Register (to 7 January 2013), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2012, Issue 12), MEDLINE via OVID (1946 to 7 January 2013), and EMBASE via OVID (1980 to 7 January 2013).
Selection criteria
Randomised controlled trials (RCTs) recruiting children or adolescents or both (aged 16 years or less) receiving any type of orthodontic treatment to correct prominent lower front teeth (Class III malocclusion). Orthodontic treatments were compared with control groups who received either no treatment, delayed treatment or a different active intervention.
Data collection and analysis
Screening of references, identification of included and excluded studies, data extraction and assessment of the risk of bias of the included studies was performed independently and in duplicate by two review authors. The mean differences with 95% confidence intervals were calculated for continuous data. Meta‐analysis was only undertaken when studies of similar comparisons reported comparable outcome measures. A fixed‐effect model was used. The I2 statistic was used as a measure of statistical heterogeneity.
Main results
Seven RCTs with a total of 339 participants were included in this review. One study was assessed as at low risk of bias, three studies were at high risk of bias, and in the remaining three studies risk of bias was unclear. Four studies reported on the use of a facemask, two on the chin cup, one on the tandem traction bow appliance, and one on mandibular headgear. One study reported on both the chin cup and mandibular headgear appliances.
One study (n = 73, low quality evidence), comparing a facemask to no treatment, reported a mean difference (MD) in overjet of 4.10 mm (95% confidence interval (CI) 3.04 to |
---|---|
ISSN: | 1465-1858 1465-1858 1469-493X |
DOI: | 10.1002/14651858.CD003451.pub2 |