Kinetics of the dispersion transition and nonergodicity of a system consisting of a disordered porous medium and a nonwetting liquid

An approach has been proposed for the description of the dispersion transition of a nonwetting liquid in confinement. This approach describes intrusion and extrusion processes for the ground state of a disordered porous medium, which is characterized by the formation of a fractal percolation cluster...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2013-11, Vol.88 (5), p.052116-052116, Article 052116
Hauptverfasser: Borman, Vladimir D, Belogorlov, Anton A, Byrkin, Victor A, Tronin, Vladimir N
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 052116
container_issue 5
container_start_page 052116
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 88
creator Borman, Vladimir D
Belogorlov, Anton A
Byrkin, Victor A
Tronin, Vladimir N
description An approach has been proposed for the description of the dispersion transition of a nonwetting liquid in confinement. This approach describes intrusion and extrusion processes for the ground state of a disordered porous medium, which is characterized by the formation of a fractal percolation cluster. The observed transition of the system of liquid nanoclusters in confinement to a metastable state in a narrow range of degrees of filling and temperatures has been explained by the appearance of a potential barrier owing to fluctuations of the collective "multiparticle interaction" of liquid nanoclusters in neighboring pores of different sizes on the shell of the fractal percolation cluster of filled pores. The energy of the metastable state forms a potential relief in the space of the porous medium with many maxima and minima. The volume of the dispersed liquid in the metastable state has been calculated within the analytical percolation theory for the ground state with the infinite percolation cluster. The extrusion-time distribution function of pores has been calculated. It has been found that the volume of the nonwetting liquid remaining in the porous medium decreases with time according to a power law. Relaxation in the system under study is a multistep process involving discontinuous equilibrium and overcoming of many local maxima of the potential relief. The formation of the metastable state of the trapped nonwetting liquid has been attributed to the nonergodicity of the disordered porous medium. The model reproduces the observed dependence of the volume of the dispersed liquid both on the degree of filling and on the temperature.
doi_str_mv 10.1103/PhysRevE.88.052116
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1492709736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1492709736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-e7afbddd904edb4e7df9bf9955182cca3292f579a6e33fae3131ba9f42b68d293</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0Eorx-gAXykk2K7cnLS1TxEkggBOvIicetURO3tgPqng8noZTVjEZnjmYuIeecTTlncPWy2IRX_LyZluWUZYLzfI8c8SxjiYAi3x97kAkUWTYhxyF8MAYCyvSQTEQKQgoBR-T70XYYbROoMzQukGobVuiDdR2NXnXBxrFVnaad69DPnbaNjZsRVzRsQsSWNm7gQrTdfDseHM5r9KjpynnXB9qitn37q1Gj6AvjL760697qU3Jg1DLg2V89Ie-3N2-z--Tp-e5hdv2UNMAgJlgoU2utJUtR1ykW2sjaSJllvBRNo8afTFZIlSOAUQgceK2kSUWdl1pIOCGXW-_Ku3WPIVatDQ0ul6rD4cqKp1IUTBaQD6jYoo13IXg01crbVvlNxVk1pl_t0q_KstqmPyxd_Pn7evj4f2UXN_wAipyGGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492709736</pqid></control><display><type>article</type><title>Kinetics of the dispersion transition and nonergodicity of a system consisting of a disordered porous medium and a nonwetting liquid</title><source>American Physical Society Journals</source><creator>Borman, Vladimir D ; Belogorlov, Anton A ; Byrkin, Victor A ; Tronin, Vladimir N</creator><creatorcontrib>Borman, Vladimir D ; Belogorlov, Anton A ; Byrkin, Victor A ; Tronin, Vladimir N</creatorcontrib><description>An approach has been proposed for the description of the dispersion transition of a nonwetting liquid in confinement. This approach describes intrusion and extrusion processes for the ground state of a disordered porous medium, which is characterized by the formation of a fractal percolation cluster. The observed transition of the system of liquid nanoclusters in confinement to a metastable state in a narrow range of degrees of filling and temperatures has been explained by the appearance of a potential barrier owing to fluctuations of the collective "multiparticle interaction" of liquid nanoclusters in neighboring pores of different sizes on the shell of the fractal percolation cluster of filled pores. The energy of the metastable state forms a potential relief in the space of the porous medium with many maxima and minima. The volume of the dispersed liquid in the metastable state has been calculated within the analytical percolation theory for the ground state with the infinite percolation cluster. The extrusion-time distribution function of pores has been calculated. It has been found that the volume of the nonwetting liquid remaining in the porous medium decreases with time according to a power law. Relaxation in the system under study is a multistep process involving discontinuous equilibrium and overcoming of many local maxima of the potential relief. The formation of the metastable state of the trapped nonwetting liquid has been attributed to the nonergodicity of the disordered porous medium. The model reproduces the observed dependence of the volume of the dispersed liquid both on the degree of filling and on the temperature.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.88.052116</identifier><identifier>PMID: 24329223</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2013-11, Vol.88 (5), p.052116-052116, Article 052116</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-e7afbddd904edb4e7df9bf9955182cca3292f579a6e33fae3131ba9f42b68d293</citedby><cites>FETCH-LOGICAL-c303t-e7afbddd904edb4e7df9bf9955182cca3292f579a6e33fae3131ba9f42b68d293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24329223$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borman, Vladimir D</creatorcontrib><creatorcontrib>Belogorlov, Anton A</creatorcontrib><creatorcontrib>Byrkin, Victor A</creatorcontrib><creatorcontrib>Tronin, Vladimir N</creatorcontrib><title>Kinetics of the dispersion transition and nonergodicity of a system consisting of a disordered porous medium and a nonwetting liquid</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>An approach has been proposed for the description of the dispersion transition of a nonwetting liquid in confinement. This approach describes intrusion and extrusion processes for the ground state of a disordered porous medium, which is characterized by the formation of a fractal percolation cluster. The observed transition of the system of liquid nanoclusters in confinement to a metastable state in a narrow range of degrees of filling and temperatures has been explained by the appearance of a potential barrier owing to fluctuations of the collective "multiparticle interaction" of liquid nanoclusters in neighboring pores of different sizes on the shell of the fractal percolation cluster of filled pores. The energy of the metastable state forms a potential relief in the space of the porous medium with many maxima and minima. The volume of the dispersed liquid in the metastable state has been calculated within the analytical percolation theory for the ground state with the infinite percolation cluster. The extrusion-time distribution function of pores has been calculated. It has been found that the volume of the nonwetting liquid remaining in the porous medium decreases with time according to a power law. Relaxation in the system under study is a multistep process involving discontinuous equilibrium and overcoming of many local maxima of the potential relief. The formation of the metastable state of the trapped nonwetting liquid has been attributed to the nonergodicity of the disordered porous medium. The model reproduces the observed dependence of the volume of the dispersed liquid both on the degree of filling and on the temperature.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0Eorx-gAXykk2K7cnLS1TxEkggBOvIicetURO3tgPqng8noZTVjEZnjmYuIeecTTlncPWy2IRX_LyZluWUZYLzfI8c8SxjiYAi3x97kAkUWTYhxyF8MAYCyvSQTEQKQgoBR-T70XYYbROoMzQukGobVuiDdR2NXnXBxrFVnaad69DPnbaNjZsRVzRsQsSWNm7gQrTdfDseHM5r9KjpynnXB9qitn37q1Gj6AvjL760697qU3Jg1DLg2V89Ie-3N2-z--Tp-e5hdv2UNMAgJlgoU2utJUtR1ykW2sjaSJllvBRNo8afTFZIlSOAUQgceK2kSUWdl1pIOCGXW-_Ku3WPIVatDQ0ul6rD4cqKp1IUTBaQD6jYoo13IXg01crbVvlNxVk1pl_t0q_KstqmPyxd_Pn7evj4f2UXN_wAipyGGw</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Borman, Vladimir D</creator><creator>Belogorlov, Anton A</creator><creator>Byrkin, Victor A</creator><creator>Tronin, Vladimir N</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201311</creationdate><title>Kinetics of the dispersion transition and nonergodicity of a system consisting of a disordered porous medium and a nonwetting liquid</title><author>Borman, Vladimir D ; Belogorlov, Anton A ; Byrkin, Victor A ; Tronin, Vladimir N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-e7afbddd904edb4e7df9bf9955182cca3292f579a6e33fae3131ba9f42b68d293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Borman, Vladimir D</creatorcontrib><creatorcontrib>Belogorlov, Anton A</creatorcontrib><creatorcontrib>Byrkin, Victor A</creatorcontrib><creatorcontrib>Tronin, Vladimir N</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borman, Vladimir D</au><au>Belogorlov, Anton A</au><au>Byrkin, Victor A</au><au>Tronin, Vladimir N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics of the dispersion transition and nonergodicity of a system consisting of a disordered porous medium and a nonwetting liquid</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2013-11</date><risdate>2013</risdate><volume>88</volume><issue>5</issue><spage>052116</spage><epage>052116</epage><pages>052116-052116</pages><artnum>052116</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>An approach has been proposed for the description of the dispersion transition of a nonwetting liquid in confinement. This approach describes intrusion and extrusion processes for the ground state of a disordered porous medium, which is characterized by the formation of a fractal percolation cluster. The observed transition of the system of liquid nanoclusters in confinement to a metastable state in a narrow range of degrees of filling and temperatures has been explained by the appearance of a potential barrier owing to fluctuations of the collective "multiparticle interaction" of liquid nanoclusters in neighboring pores of different sizes on the shell of the fractal percolation cluster of filled pores. The energy of the metastable state forms a potential relief in the space of the porous medium with many maxima and minima. The volume of the dispersed liquid in the metastable state has been calculated within the analytical percolation theory for the ground state with the infinite percolation cluster. The extrusion-time distribution function of pores has been calculated. It has been found that the volume of the nonwetting liquid remaining in the porous medium decreases with time according to a power law. Relaxation in the system under study is a multistep process involving discontinuous equilibrium and overcoming of many local maxima of the potential relief. The formation of the metastable state of the trapped nonwetting liquid has been attributed to the nonergodicity of the disordered porous medium. The model reproduces the observed dependence of the volume of the dispersed liquid both on the degree of filling and on the temperature.</abstract><cop>United States</cop><pmid>24329223</pmid><doi>10.1103/PhysRevE.88.052116</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2013-11, Vol.88 (5), p.052116-052116, Article 052116
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_1492709736
source American Physical Society Journals
title Kinetics of the dispersion transition and nonergodicity of a system consisting of a disordered porous medium and a nonwetting liquid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A25%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20of%20the%20dispersion%20transition%20and%20nonergodicity%20of%20a%20system%20consisting%20of%20a%20disordered%20porous%20medium%20and%20a%20nonwetting%20liquid&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Borman,%20Vladimir%20D&rft.date=2013-11&rft.volume=88&rft.issue=5&rft.spage=052116&rft.epage=052116&rft.pages=052116-052116&rft.artnum=052116&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.88.052116&rft_dat=%3Cproquest_cross%3E1492709736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492709736&rft_id=info:pmid/24329223&rfr_iscdi=true