Chemical limnology in coastal East Antarctic lakes: monitoring future climate change in centres of endemism and biodiversity

Polar lakes respond quickly to climate-induced environmental changes. We studied the chemical limnological variability in 127 lakes and ponds from eight ice-free regions along the East Antarctic coastline, and compared repeat specific conductance measurements from lakes in the Larsemann Hills and Sk...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antarctic science 2012-02, Vol.24 (1), p.23-33
Hauptverfasser: Verleyen, Elie, Hodgson, Dominic A., Gibson, John, Imura, Satoshi, Kaup, Enn, Kudoh, Sakae, De Wever, Aaike, Hoshino, Tamotsu, McMinn, Andrew, Obbels, Dagmar, Roberts, Donna, Roberts, Steve, Sabbe, Koen, Souffreau, Caroline, Tavernier, Ines, van Nieuwenhuyze, Wim, van Ranst, Eric, Vindevogel, Nicole, Vyverman, Wim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue 1
container_start_page 23
container_title Antarctic science
container_volume 24
creator Verleyen, Elie
Hodgson, Dominic A.
Gibson, John
Imura, Satoshi
Kaup, Enn
Kudoh, Sakae
De Wever, Aaike
Hoshino, Tamotsu
McMinn, Andrew
Obbels, Dagmar
Roberts, Donna
Roberts, Steve
Sabbe, Koen
Souffreau, Caroline
Tavernier, Ines
van Nieuwenhuyze, Wim
van Ranst, Eric
Vindevogel, Nicole
Vyverman, Wim
description Polar lakes respond quickly to climate-induced environmental changes. We studied the chemical limnological variability in 127 lakes and ponds from eight ice-free regions along the East Antarctic coastline, and compared repeat specific conductance measurements from lakes in the Larsemann Hills and Skarvsnes covering the periods 1987–2009 and 1997–2008, respectively. Specific conductance, the concentration of the major ions, pH and the concentration of the major nutrients underlie the variation in limnology between and within the regions. This limnological variability is probably related to differences in the time of deglaciation, lake origin and evolution, geology and geomorphology of the lake basins and their catchment areas, sub-regional climate patterns, the distance of the lakes and the lake districts to the ice sheet and the Southern Ocean, and the presence of particular biota in the lakes and their catchment areas. In regions where repeat surveys were available, inter-annual and inter-decadal variability in specific conductance was relatively large and most pronounced in the non-dilute lakes with a low lake depth to surface area ratio. We conclude that long-term specific conductance measurements in these lakes are complementary to snow accumulation data from ice cores, inexpensive, easy to obtain, and should thus be part of long-term limnological and biological monitoring programmes.
doi_str_mv 10.1017/S0954102011000642
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1492659388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0954102011000642</cupid><sourcerecordid>2579301181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-e4cc1c047bd7f6b6d57faee7283a068ed04bd39c8c354c47762e1c1ab34dc09e3</originalsourceid><addsrcrecordid>eNp1UU1r3DAQFaGFbNP8gNxEodCL09GHLTu3sKRNIZBDkrORpfFGqS0lkhxY6I-vtlkSaOnpwcx7b97MEHLC4JQBU19voKslAw6MAUAj-QFZMdHUFQfVvSOrXbva9Q_Jh5QeABhva1iRX-t7nJ3RE53c7MMUNlvqPDVBp1yKFwXouc86muwMnfRPTGd0Dt7lEJ3f0HHJS0Rqilrngvfab_CPA_ocMdEwUvS2zEgz1d7SwQXrnjEml7cfyftRTwmP93hE7r5d3K4vq6vr7z_W51eVkZznCqUxzIBUg1VjMzS2VqNGVLwVGpoWLcjBis60RtTSSKUajswwPQhpDXQojsiXF9_HGJ4WTLkvcQxOk_YYltQz2fGm7kTbFuqnv6gPYYm-pOs7Xi4rJFOFxF5IJoaUIo79Yyz7x23PoN-9o__nHUXzeW-sUzn3GLU3Lr0Ked1JUKwuPLH31vMQnd3gW4L_u_8GxqKaog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920003417</pqid></control><display><type>article</type><title>Chemical limnology in coastal East Antarctic lakes: monitoring future climate change in centres of endemism and biodiversity</title><source>Cambridge University Press Journals Complete</source><creator>Verleyen, Elie ; Hodgson, Dominic A. ; Gibson, John ; Imura, Satoshi ; Kaup, Enn ; Kudoh, Sakae ; De Wever, Aaike ; Hoshino, Tamotsu ; McMinn, Andrew ; Obbels, Dagmar ; Roberts, Donna ; Roberts, Steve ; Sabbe, Koen ; Souffreau, Caroline ; Tavernier, Ines ; van Nieuwenhuyze, Wim ; van Ranst, Eric ; Vindevogel, Nicole ; Vyverman, Wim</creator><creatorcontrib>Verleyen, Elie ; Hodgson, Dominic A. ; Gibson, John ; Imura, Satoshi ; Kaup, Enn ; Kudoh, Sakae ; De Wever, Aaike ; Hoshino, Tamotsu ; McMinn, Andrew ; Obbels, Dagmar ; Roberts, Donna ; Roberts, Steve ; Sabbe, Koen ; Souffreau, Caroline ; Tavernier, Ines ; van Nieuwenhuyze, Wim ; van Ranst, Eric ; Vindevogel, Nicole ; Vyverman, Wim</creatorcontrib><description>Polar lakes respond quickly to climate-induced environmental changes. We studied the chemical limnological variability in 127 lakes and ponds from eight ice-free regions along the East Antarctic coastline, and compared repeat specific conductance measurements from lakes in the Larsemann Hills and Skarvsnes covering the periods 1987–2009 and 1997–2008, respectively. Specific conductance, the concentration of the major ions, pH and the concentration of the major nutrients underlie the variation in limnology between and within the regions. This limnological variability is probably related to differences in the time of deglaciation, lake origin and evolution, geology and geomorphology of the lake basins and their catchment areas, sub-regional climate patterns, the distance of the lakes and the lake districts to the ice sheet and the Southern Ocean, and the presence of particular biota in the lakes and their catchment areas. In regions where repeat surveys were available, inter-annual and inter-decadal variability in specific conductance was relatively large and most pronounced in the non-dilute lakes with a low lake depth to surface area ratio. We conclude that long-term specific conductance measurements in these lakes are complementary to snow accumulation data from ice cores, inexpensive, easy to obtain, and should thus be part of long-term limnological and biological monitoring programmes.</description><identifier>ISSN: 0954-1020</identifier><identifier>EISSN: 1365-2079</identifier><identifier>DOI: 10.1017/S0954102011000642</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Biomonitoring ; Biota ; Catchment areas ; Climate change ; Conductance ; Deglaciation ; Earth sciences ; Earth, ocean, space ; Endemism ; Engineering and environment geology. Geothermics ; Environmental changes ; Exact sciences and technology ; Freshwater ; Geochemistry ; Geomorphology ; Hydrology ; Hydrology. Hydrogeology ; Ice ; Lake basins ; Lakes ; Limnology ; Mineralogy ; Pollution, environment geology ; Silicates ; Snow accumulation ; Water depth ; Water geochemistry</subject><ispartof>Antarctic science, 2012-02, Vol.24 (1), p.23-33</ispartof><rights>Copyright © Antarctic Science Ltd 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-e4cc1c047bd7f6b6d57faee7283a068ed04bd39c8c354c47762e1c1ab34dc09e3</citedby><cites>FETCH-LOGICAL-c422t-e4cc1c047bd7f6b6d57faee7283a068ed04bd39c8c354c47762e1c1ab34dc09e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0954102011000642/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25940715$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Verleyen, Elie</creatorcontrib><creatorcontrib>Hodgson, Dominic A.</creatorcontrib><creatorcontrib>Gibson, John</creatorcontrib><creatorcontrib>Imura, Satoshi</creatorcontrib><creatorcontrib>Kaup, Enn</creatorcontrib><creatorcontrib>Kudoh, Sakae</creatorcontrib><creatorcontrib>De Wever, Aaike</creatorcontrib><creatorcontrib>Hoshino, Tamotsu</creatorcontrib><creatorcontrib>McMinn, Andrew</creatorcontrib><creatorcontrib>Obbels, Dagmar</creatorcontrib><creatorcontrib>Roberts, Donna</creatorcontrib><creatorcontrib>Roberts, Steve</creatorcontrib><creatorcontrib>Sabbe, Koen</creatorcontrib><creatorcontrib>Souffreau, Caroline</creatorcontrib><creatorcontrib>Tavernier, Ines</creatorcontrib><creatorcontrib>van Nieuwenhuyze, Wim</creatorcontrib><creatorcontrib>van Ranst, Eric</creatorcontrib><creatorcontrib>Vindevogel, Nicole</creatorcontrib><creatorcontrib>Vyverman, Wim</creatorcontrib><title>Chemical limnology in coastal East Antarctic lakes: monitoring future climate change in centres of endemism and biodiversity</title><title>Antarctic science</title><description>Polar lakes respond quickly to climate-induced environmental changes. We studied the chemical limnological variability in 127 lakes and ponds from eight ice-free regions along the East Antarctic coastline, and compared repeat specific conductance measurements from lakes in the Larsemann Hills and Skarvsnes covering the periods 1987–2009 and 1997–2008, respectively. Specific conductance, the concentration of the major ions, pH and the concentration of the major nutrients underlie the variation in limnology between and within the regions. This limnological variability is probably related to differences in the time of deglaciation, lake origin and evolution, geology and geomorphology of the lake basins and their catchment areas, sub-regional climate patterns, the distance of the lakes and the lake districts to the ice sheet and the Southern Ocean, and the presence of particular biota in the lakes and their catchment areas. In regions where repeat surveys were available, inter-annual and inter-decadal variability in specific conductance was relatively large and most pronounced in the non-dilute lakes with a low lake depth to surface area ratio. We conclude that long-term specific conductance measurements in these lakes are complementary to snow accumulation data from ice cores, inexpensive, easy to obtain, and should thus be part of long-term limnological and biological monitoring programmes.</description><subject>Biomonitoring</subject><subject>Biota</subject><subject>Catchment areas</subject><subject>Climate change</subject><subject>Conductance</subject><subject>Deglaciation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Endemism</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Environmental changes</subject><subject>Exact sciences and technology</subject><subject>Freshwater</subject><subject>Geochemistry</subject><subject>Geomorphology</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Ice</subject><subject>Lake basins</subject><subject>Lakes</subject><subject>Limnology</subject><subject>Mineralogy</subject><subject>Pollution, environment geology</subject><subject>Silicates</subject><subject>Snow accumulation</subject><subject>Water depth</subject><subject>Water geochemistry</subject><issn>0954-1020</issn><issn>1365-2079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1UU1r3DAQFaGFbNP8gNxEodCL09GHLTu3sKRNIZBDkrORpfFGqS0lkhxY6I-vtlkSaOnpwcx7b97MEHLC4JQBU19voKslAw6MAUAj-QFZMdHUFQfVvSOrXbva9Q_Jh5QeABhva1iRX-t7nJ3RE53c7MMUNlvqPDVBp1yKFwXouc86muwMnfRPTGd0Dt7lEJ3f0HHJS0Rqilrngvfab_CPA_ocMdEwUvS2zEgz1d7SwQXrnjEml7cfyftRTwmP93hE7r5d3K4vq6vr7z_W51eVkZznCqUxzIBUg1VjMzS2VqNGVLwVGpoWLcjBis60RtTSSKUajswwPQhpDXQojsiXF9_HGJ4WTLkvcQxOk_YYltQz2fGm7kTbFuqnv6gPYYm-pOs7Xi4rJFOFxF5IJoaUIo79Yyz7x23PoN-9o__nHUXzeW-sUzn3GLU3Lr0Ked1JUKwuPLH31vMQnd3gW4L_u_8GxqKaog</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Verleyen, Elie</creator><creator>Hodgson, Dominic A.</creator><creator>Gibson, John</creator><creator>Imura, Satoshi</creator><creator>Kaup, Enn</creator><creator>Kudoh, Sakae</creator><creator>De Wever, Aaike</creator><creator>Hoshino, Tamotsu</creator><creator>McMinn, Andrew</creator><creator>Obbels, Dagmar</creator><creator>Roberts, Donna</creator><creator>Roberts, Steve</creator><creator>Sabbe, Koen</creator><creator>Souffreau, Caroline</creator><creator>Tavernier, Ines</creator><creator>van Nieuwenhuyze, Wim</creator><creator>van Ranst, Eric</creator><creator>Vindevogel, Nicole</creator><creator>Vyverman, Wim</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>M7N</scope><scope>M7S</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7QH</scope><scope>7ST</scope><scope>7U6</scope><scope>7UA</scope></search><sort><creationdate>20120201</creationdate><title>Chemical limnology in coastal East Antarctic lakes: monitoring future climate change in centres of endemism and biodiversity</title><author>Verleyen, Elie ; Hodgson, Dominic A. ; Gibson, John ; Imura, Satoshi ; Kaup, Enn ; Kudoh, Sakae ; De Wever, Aaike ; Hoshino, Tamotsu ; McMinn, Andrew ; Obbels, Dagmar ; Roberts, Donna ; Roberts, Steve ; Sabbe, Koen ; Souffreau, Caroline ; Tavernier, Ines ; van Nieuwenhuyze, Wim ; van Ranst, Eric ; Vindevogel, Nicole ; Vyverman, Wim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-e4cc1c047bd7f6b6d57faee7283a068ed04bd39c8c354c47762e1c1ab34dc09e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biomonitoring</topic><topic>Biota</topic><topic>Catchment areas</topic><topic>Climate change</topic><topic>Conductance</topic><topic>Deglaciation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Endemism</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Environmental changes</topic><topic>Exact sciences and technology</topic><topic>Freshwater</topic><topic>Geochemistry</topic><topic>Geomorphology</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Ice</topic><topic>Lake basins</topic><topic>Lakes</topic><topic>Limnology</topic><topic>Mineralogy</topic><topic>Pollution, environment geology</topic><topic>Silicates</topic><topic>Snow accumulation</topic><topic>Water depth</topic><topic>Water geochemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verleyen, Elie</creatorcontrib><creatorcontrib>Hodgson, Dominic A.</creatorcontrib><creatorcontrib>Gibson, John</creatorcontrib><creatorcontrib>Imura, Satoshi</creatorcontrib><creatorcontrib>Kaup, Enn</creatorcontrib><creatorcontrib>Kudoh, Sakae</creatorcontrib><creatorcontrib>De Wever, Aaike</creatorcontrib><creatorcontrib>Hoshino, Tamotsu</creatorcontrib><creatorcontrib>McMinn, Andrew</creatorcontrib><creatorcontrib>Obbels, Dagmar</creatorcontrib><creatorcontrib>Roberts, Donna</creatorcontrib><creatorcontrib>Roberts, Steve</creatorcontrib><creatorcontrib>Sabbe, Koen</creatorcontrib><creatorcontrib>Souffreau, Caroline</creatorcontrib><creatorcontrib>Tavernier, Ines</creatorcontrib><creatorcontrib>van Nieuwenhuyze, Wim</creatorcontrib><creatorcontrib>van Ranst, Eric</creatorcontrib><creatorcontrib>Vindevogel, Nicole</creatorcontrib><creatorcontrib>Vyverman, Wim</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><jtitle>Antarctic science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verleyen, Elie</au><au>Hodgson, Dominic A.</au><au>Gibson, John</au><au>Imura, Satoshi</au><au>Kaup, Enn</au><au>Kudoh, Sakae</au><au>De Wever, Aaike</au><au>Hoshino, Tamotsu</au><au>McMinn, Andrew</au><au>Obbels, Dagmar</au><au>Roberts, Donna</au><au>Roberts, Steve</au><au>Sabbe, Koen</au><au>Souffreau, Caroline</au><au>Tavernier, Ines</au><au>van Nieuwenhuyze, Wim</au><au>van Ranst, Eric</au><au>Vindevogel, Nicole</au><au>Vyverman, Wim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical limnology in coastal East Antarctic lakes: monitoring future climate change in centres of endemism and biodiversity</atitle><jtitle>Antarctic science</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>24</volume><issue>1</issue><spage>23</spage><epage>33</epage><pages>23-33</pages><issn>0954-1020</issn><eissn>1365-2079</eissn><abstract>Polar lakes respond quickly to climate-induced environmental changes. We studied the chemical limnological variability in 127 lakes and ponds from eight ice-free regions along the East Antarctic coastline, and compared repeat specific conductance measurements from lakes in the Larsemann Hills and Skarvsnes covering the periods 1987–2009 and 1997–2008, respectively. Specific conductance, the concentration of the major ions, pH and the concentration of the major nutrients underlie the variation in limnology between and within the regions. This limnological variability is probably related to differences in the time of deglaciation, lake origin and evolution, geology and geomorphology of the lake basins and their catchment areas, sub-regional climate patterns, the distance of the lakes and the lake districts to the ice sheet and the Southern Ocean, and the presence of particular biota in the lakes and their catchment areas. In regions where repeat surveys were available, inter-annual and inter-decadal variability in specific conductance was relatively large and most pronounced in the non-dilute lakes with a low lake depth to surface area ratio. We conclude that long-term specific conductance measurements in these lakes are complementary to snow accumulation data from ice cores, inexpensive, easy to obtain, and should thus be part of long-term limnological and biological monitoring programmes.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0954102011000642</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0954-1020
ispartof Antarctic science, 2012-02, Vol.24 (1), p.23-33
issn 0954-1020
1365-2079
language eng
recordid cdi_proquest_miscellaneous_1492659388
source Cambridge University Press Journals Complete
subjects Biomonitoring
Biota
Catchment areas
Climate change
Conductance
Deglaciation
Earth sciences
Earth, ocean, space
Endemism
Engineering and environment geology. Geothermics
Environmental changes
Exact sciences and technology
Freshwater
Geochemistry
Geomorphology
Hydrology
Hydrology. Hydrogeology
Ice
Lake basins
Lakes
Limnology
Mineralogy
Pollution, environment geology
Silicates
Snow accumulation
Water depth
Water geochemistry
title Chemical limnology in coastal East Antarctic lakes: monitoring future climate change in centres of endemism and biodiversity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20limnology%20in%20coastal%20East%20Antarctic%20lakes:%20monitoring%20future%20climate%20change%20in%20centres%20of%20endemism%20and%20biodiversity&rft.jtitle=Antarctic%20science&rft.au=Verleyen,%20Elie&rft.date=2012-02-01&rft.volume=24&rft.issue=1&rft.spage=23&rft.epage=33&rft.pages=23-33&rft.issn=0954-1020&rft.eissn=1365-2079&rft_id=info:doi/10.1017/S0954102011000642&rft_dat=%3Cproquest_cross%3E2579301181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920003417&rft_id=info:pmid/&rft_cupid=10_1017_S0954102011000642&rfr_iscdi=true