SOWING STRATEGIES FOR BARLEY (HORDEUM VULGARE L.) BASED ON MODELLED YIELD RESPONSE TO WATER WITH AQUACROP

AquaCrop, the FAO water productivity model, is used as a tool to predict crop production under water limiting conditions. In the first step AquaCrop was calibrated and validated for barley (Hordeum vulgare L.). Data sets of field experiments at seven different locations in four countries (Ethiopia,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental agriculture 2012-04, Vol.48 (2), p.252-271
Hauptverfasser: ABRHA, BERHANU, DELBECQUE, NELE, RAES, DIRK, TSEGAY, ALEMTSEHAY, TODOROVIC, MLADEN, HENG, LEE, VANUTRECHT, ELINE, GEERTS, SAM, GARCIA-VILA, MARGA, DECKERS, SEPPE
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 271
container_issue 2
container_start_page 252
container_title Experimental agriculture
container_volume 48
creator ABRHA, BERHANU
DELBECQUE, NELE
RAES, DIRK
TSEGAY, ALEMTSEHAY
TODOROVIC, MLADEN
HENG, LEE
VANUTRECHT, ELINE
GEERTS, SAM
GARCIA-VILA, MARGA
DECKERS, SEPPE
description AquaCrop, the FAO water productivity model, is used as a tool to predict crop production under water limiting conditions. In the first step AquaCrop was calibrated and validated for barley (Hordeum vulgare L.). Data sets of field experiments at seven different locations in four countries (Ethiopia, Italy, Syria and Montana, USA) with different climates in different years and with five different cultivars were used for model calibration and validation. The goodness-of-fit between observed and simulated soil water content, green canopy cover, biomass and grain yield was assessed by means of the coefficient of determination (R2), the Nash–Sutcliff efficiency (E), the index of agreement (d) and the root mean square error (RMSE). The statistical parameters indicated an adequate accuracy of simulations (validation regression of yield: R2 = 0.95, E = 0.94, d = 0.99, RMSE = 0.34). Subsequently, sowing strategies in the semi-arid environment of northern Ethiopia were evaluated with the validated model. Dry sowing had a probability of 47% germination failure attributable to false start of the rainy season. On the other hand, delay sowing at the start of the rainy season to eliminate germinating weeds should be kept as short as possible because grain yields strongly reduce in the season due to water stress when sowing is delayed on shallow soils. This research demonstrates the ability of AquaCrop to predict accurately crop performance with only a limited set of input variables, and the robustness of the model under various environmental and climatic conditions.
doi_str_mv 10.1017/S0014479711001190
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1492633107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0014479711001190</cupid><sourcerecordid>1492633107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-9deca52e14db03183302a78952329c0cbedba553b621d2d159e0774a0139b3af3</originalsourceid><addsrcrecordid>eNp1kE1P4zAQhq3VrkSX5QdwWosTHMJ6bOfDx9CaNlKoIR9bcbKcxEVBLYGYHvj3uCrSSos4zYzeZ975QOgUyCUQiP-UhADnsYgBfAaCfEMT4JEIOOfwHU32crDXj9BP5x59yUjCJqgv1SpbznFZFWkl55ks8bUq8FVa5PIeny9UMZP1Df5b5_O0kDi_vPBaKWdYLfGNmsk89_l9JvMZLmR5q5alxJXCK29W4FVWLXB6V6fTQt3-Qj_WZuPsyUc8RvW1rKaLIFfzbJrmQcsheg1EZ1sTUgu8awiDhDFCTZyIkDIqWtI2tmtMGLImotDRDkJhSRxz4w8SDTNrdozOD77P4_Cys-5Vb3vX2s3GPNlh5zRwQSPGgMQePfsPfRx245PfTnsmjJIw4h6CA9SOg3OjXevnsd-a8U0D0fvf60-_9z2_Dz1rM2jzMPZO1yUlEHk9iSnbE-zD1Wybse8e7L_ZX_u-Axo8g60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926568564</pqid></control><display><type>article</type><title>SOWING STRATEGIES FOR BARLEY (HORDEUM VULGARE L.) BASED ON MODELLED YIELD RESPONSE TO WATER WITH AQUACROP</title><source>Cambridge Journals</source><creator>ABRHA, BERHANU ; DELBECQUE, NELE ; RAES, DIRK ; TSEGAY, ALEMTSEHAY ; TODOROVIC, MLADEN ; HENG, LEE ; VANUTRECHT, ELINE ; GEERTS, SAM ; GARCIA-VILA, MARGA ; DECKERS, SEPPE</creator><creatorcontrib>ABRHA, BERHANU ; DELBECQUE, NELE ; RAES, DIRK ; TSEGAY, ALEMTSEHAY ; TODOROVIC, MLADEN ; HENG, LEE ; VANUTRECHT, ELINE ; GEERTS, SAM ; GARCIA-VILA, MARGA ; DECKERS, SEPPE</creatorcontrib><description>AquaCrop, the FAO water productivity model, is used as a tool to predict crop production under water limiting conditions. In the first step AquaCrop was calibrated and validated for barley (Hordeum vulgare L.). Data sets of field experiments at seven different locations in four countries (Ethiopia, Italy, Syria and Montana, USA) with different climates in different years and with five different cultivars were used for model calibration and validation. The goodness-of-fit between observed and simulated soil water content, green canopy cover, biomass and grain yield was assessed by means of the coefficient of determination (R2), the Nash–Sutcliff efficiency (E), the index of agreement (d) and the root mean square error (RMSE). The statistical parameters indicated an adequate accuracy of simulations (validation regression of yield: R2 = 0.95, E = 0.94, d = 0.99, RMSE = 0.34). Subsequently, sowing strategies in the semi-arid environment of northern Ethiopia were evaluated with the validated model. Dry sowing had a probability of 47% germination failure attributable to false start of the rainy season. On the other hand, delay sowing at the start of the rainy season to eliminate germinating weeds should be kept as short as possible because grain yields strongly reduce in the season due to water stress when sowing is delayed on shallow soils. This research demonstrates the ability of AquaCrop to predict accurately crop performance with only a limited set of input variables, and the robustness of the model under various environmental and climatic conditions.</description><identifier>ISSN: 0014-4797</identifier><identifier>ISSN: 1469-4441</identifier><identifier>EISSN: 1469-4441</identifier><identifier>DOI: 10.1017/S0014479711001190</identifier><identifier>CODEN: EXAGAL</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Agronomy ; Arid environments ; Barley ; biomass ; canopy ; Climatic conditions ; climatic factors ; Computer simulation ; Crop production ; Crop yield ; Cultivars ; data collection ; field experimentation ; Field tests ; Food and Agriculture Organization ; germination ; Grain ; grain yield ; Hordeum vulgare ; Irrigation ; Moisture content ; probability ; Rainy season ; Seasons ; Semiarid environments ; semiarid zones ; Soil water ; soil water content ; sowing ; Water content ; Water stress ; weeds ; wet season</subject><ispartof>Experimental agriculture, 2012-04, Vol.48 (2), p.252-271</ispartof><rights>Copyright © Cambridge University Press 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-9deca52e14db03183302a78952329c0cbedba553b621d2d159e0774a0139b3af3</citedby><cites>FETCH-LOGICAL-c416t-9deca52e14db03183302a78952329c0cbedba553b621d2d159e0774a0139b3af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0014479711001190/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>ABRHA, BERHANU</creatorcontrib><creatorcontrib>DELBECQUE, NELE</creatorcontrib><creatorcontrib>RAES, DIRK</creatorcontrib><creatorcontrib>TSEGAY, ALEMTSEHAY</creatorcontrib><creatorcontrib>TODOROVIC, MLADEN</creatorcontrib><creatorcontrib>HENG, LEE</creatorcontrib><creatorcontrib>VANUTRECHT, ELINE</creatorcontrib><creatorcontrib>GEERTS, SAM</creatorcontrib><creatorcontrib>GARCIA-VILA, MARGA</creatorcontrib><creatorcontrib>DECKERS, SEPPE</creatorcontrib><title>SOWING STRATEGIES FOR BARLEY (HORDEUM VULGARE L.) BASED ON MODELLED YIELD RESPONSE TO WATER WITH AQUACROP</title><title>Experimental agriculture</title><description>AquaCrop, the FAO water productivity model, is used as a tool to predict crop production under water limiting conditions. In the first step AquaCrop was calibrated and validated for barley (Hordeum vulgare L.). Data sets of field experiments at seven different locations in four countries (Ethiopia, Italy, Syria and Montana, USA) with different climates in different years and with five different cultivars were used for model calibration and validation. The goodness-of-fit between observed and simulated soil water content, green canopy cover, biomass and grain yield was assessed by means of the coefficient of determination (R2), the Nash–Sutcliff efficiency (E), the index of agreement (d) and the root mean square error (RMSE). The statistical parameters indicated an adequate accuracy of simulations (validation regression of yield: R2 = 0.95, E = 0.94, d = 0.99, RMSE = 0.34). Subsequently, sowing strategies in the semi-arid environment of northern Ethiopia were evaluated with the validated model. Dry sowing had a probability of 47% germination failure attributable to false start of the rainy season. On the other hand, delay sowing at the start of the rainy season to eliminate germinating weeds should be kept as short as possible because grain yields strongly reduce in the season due to water stress when sowing is delayed on shallow soils. This research demonstrates the ability of AquaCrop to predict accurately crop performance with only a limited set of input variables, and the robustness of the model under various environmental and climatic conditions.</description><subject>Agronomy</subject><subject>Arid environments</subject><subject>Barley</subject><subject>biomass</subject><subject>canopy</subject><subject>Climatic conditions</subject><subject>climatic factors</subject><subject>Computer simulation</subject><subject>Crop production</subject><subject>Crop yield</subject><subject>Cultivars</subject><subject>data collection</subject><subject>field experimentation</subject><subject>Field tests</subject><subject>Food and Agriculture Organization</subject><subject>germination</subject><subject>Grain</subject><subject>grain yield</subject><subject>Hordeum vulgare</subject><subject>Irrigation</subject><subject>Moisture content</subject><subject>probability</subject><subject>Rainy season</subject><subject>Seasons</subject><subject>Semiarid environments</subject><subject>semiarid zones</subject><subject>Soil water</subject><subject>soil water content</subject><subject>sowing</subject><subject>Water content</subject><subject>Water stress</subject><subject>weeds</subject><subject>wet season</subject><issn>0014-4797</issn><issn>1469-4441</issn><issn>1469-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1P4zAQhq3VrkSX5QdwWosTHMJ6bOfDx9CaNlKoIR9bcbKcxEVBLYGYHvj3uCrSSos4zYzeZ975QOgUyCUQiP-UhADnsYgBfAaCfEMT4JEIOOfwHU32crDXj9BP5x59yUjCJqgv1SpbznFZFWkl55ks8bUq8FVa5PIeny9UMZP1Df5b5_O0kDi_vPBaKWdYLfGNmsk89_l9JvMZLmR5q5alxJXCK29W4FVWLXB6V6fTQt3-Qj_WZuPsyUc8RvW1rKaLIFfzbJrmQcsheg1EZ1sTUgu8awiDhDFCTZyIkDIqWtI2tmtMGLImotDRDkJhSRxz4w8SDTNrdozOD77P4_Cys-5Vb3vX2s3GPNlh5zRwQSPGgMQePfsPfRx245PfTnsmjJIw4h6CA9SOg3OjXevnsd-a8U0D0fvf60-_9z2_Dz1rM2jzMPZO1yUlEHk9iSnbE-zD1Wybse8e7L_ZX_u-Axo8g60</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>ABRHA, BERHANU</creator><creator>DELBECQUE, NELE</creator><creator>RAES, DIRK</creator><creator>TSEGAY, ALEMTSEHAY</creator><creator>TODOROVIC, MLADEN</creator><creator>HENG, LEE</creator><creator>VANUTRECHT, ELINE</creator><creator>GEERTS, SAM</creator><creator>GARCIA-VILA, MARGA</creator><creator>DECKERS, SEPPE</creator><general>Cambridge University Press</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7X2</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7U6</scope></search><sort><creationdate>20120401</creationdate><title>SOWING STRATEGIES FOR BARLEY (HORDEUM VULGARE L.) BASED ON MODELLED YIELD RESPONSE TO WATER WITH AQUACROP</title><author>ABRHA, BERHANU ; DELBECQUE, NELE ; RAES, DIRK ; TSEGAY, ALEMTSEHAY ; TODOROVIC, MLADEN ; HENG, LEE ; VANUTRECHT, ELINE ; GEERTS, SAM ; GARCIA-VILA, MARGA ; DECKERS, SEPPE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-9deca52e14db03183302a78952329c0cbedba553b621d2d159e0774a0139b3af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Agronomy</topic><topic>Arid environments</topic><topic>Barley</topic><topic>biomass</topic><topic>canopy</topic><topic>Climatic conditions</topic><topic>climatic factors</topic><topic>Computer simulation</topic><topic>Crop production</topic><topic>Crop yield</topic><topic>Cultivars</topic><topic>data collection</topic><topic>field experimentation</topic><topic>Field tests</topic><topic>Food and Agriculture Organization</topic><topic>germination</topic><topic>Grain</topic><topic>grain yield</topic><topic>Hordeum vulgare</topic><topic>Irrigation</topic><topic>Moisture content</topic><topic>probability</topic><topic>Rainy season</topic><topic>Seasons</topic><topic>Semiarid environments</topic><topic>semiarid zones</topic><topic>Soil water</topic><topic>soil water content</topic><topic>sowing</topic><topic>Water content</topic><topic>Water stress</topic><topic>weeds</topic><topic>wet season</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ABRHA, BERHANU</creatorcontrib><creatorcontrib>DELBECQUE, NELE</creatorcontrib><creatorcontrib>RAES, DIRK</creatorcontrib><creatorcontrib>TSEGAY, ALEMTSEHAY</creatorcontrib><creatorcontrib>TODOROVIC, MLADEN</creatorcontrib><creatorcontrib>HENG, LEE</creatorcontrib><creatorcontrib>VANUTRECHT, ELINE</creatorcontrib><creatorcontrib>GEERTS, SAM</creatorcontrib><creatorcontrib>GARCIA-VILA, MARGA</creatorcontrib><creatorcontrib>DECKERS, SEPPE</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Experimental agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ABRHA, BERHANU</au><au>DELBECQUE, NELE</au><au>RAES, DIRK</au><au>TSEGAY, ALEMTSEHAY</au><au>TODOROVIC, MLADEN</au><au>HENG, LEE</au><au>VANUTRECHT, ELINE</au><au>GEERTS, SAM</au><au>GARCIA-VILA, MARGA</au><au>DECKERS, SEPPE</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SOWING STRATEGIES FOR BARLEY (HORDEUM VULGARE L.) BASED ON MODELLED YIELD RESPONSE TO WATER WITH AQUACROP</atitle><jtitle>Experimental agriculture</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>48</volume><issue>2</issue><spage>252</spage><epage>271</epage><pages>252-271</pages><issn>0014-4797</issn><issn>1469-4441</issn><eissn>1469-4441</eissn><coden>EXAGAL</coden><abstract>AquaCrop, the FAO water productivity model, is used as a tool to predict crop production under water limiting conditions. In the first step AquaCrop was calibrated and validated for barley (Hordeum vulgare L.). Data sets of field experiments at seven different locations in four countries (Ethiopia, Italy, Syria and Montana, USA) with different climates in different years and with five different cultivars were used for model calibration and validation. The goodness-of-fit between observed and simulated soil water content, green canopy cover, biomass and grain yield was assessed by means of the coefficient of determination (R2), the Nash–Sutcliff efficiency (E), the index of agreement (d) and the root mean square error (RMSE). The statistical parameters indicated an adequate accuracy of simulations (validation regression of yield: R2 = 0.95, E = 0.94, d = 0.99, RMSE = 0.34). Subsequently, sowing strategies in the semi-arid environment of northern Ethiopia were evaluated with the validated model. Dry sowing had a probability of 47% germination failure attributable to false start of the rainy season. On the other hand, delay sowing at the start of the rainy season to eliminate germinating weeds should be kept as short as possible because grain yields strongly reduce in the season due to water stress when sowing is delayed on shallow soils. This research demonstrates the ability of AquaCrop to predict accurately crop performance with only a limited set of input variables, and the robustness of the model under various environmental and climatic conditions.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0014479711001190</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-4797
ispartof Experimental agriculture, 2012-04, Vol.48 (2), p.252-271
issn 0014-4797
1469-4441
1469-4441
language eng
recordid cdi_proquest_miscellaneous_1492633107
source Cambridge Journals
subjects Agronomy
Arid environments
Barley
biomass
canopy
Climatic conditions
climatic factors
Computer simulation
Crop production
Crop yield
Cultivars
data collection
field experimentation
Field tests
Food and Agriculture Organization
germination
Grain
grain yield
Hordeum vulgare
Irrigation
Moisture content
probability
Rainy season
Seasons
Semiarid environments
semiarid zones
Soil water
soil water content
sowing
Water content
Water stress
weeds
wet season
title SOWING STRATEGIES FOR BARLEY (HORDEUM VULGARE L.) BASED ON MODELLED YIELD RESPONSE TO WATER WITH AQUACROP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SOWING%20STRATEGIES%20FOR%20BARLEY%20(HORDEUM%20VULGARE%20L.)%20BASED%20ON%20MODELLED%20YIELD%20RESPONSE%20TO%20WATER%20WITH%20AQUACROP&rft.jtitle=Experimental%20agriculture&rft.au=ABRHA,%20BERHANU&rft.date=2012-04-01&rft.volume=48&rft.issue=2&rft.spage=252&rft.epage=271&rft.pages=252-271&rft.issn=0014-4797&rft.eissn=1469-4441&rft.coden=EXAGAL&rft_id=info:doi/10.1017/S0014479711001190&rft_dat=%3Cproquest_cross%3E1492633107%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926568564&rft_id=info:pmid/&rft_cupid=10_1017_S0014479711001190&rfr_iscdi=true