Hyperspectral aerosol optical depths from TCAP flights
The 4STAR (Spectrometer for Sky‐Scanning, Sun‐Tracking Atmospheric Research), a hyperspectral airborne Sun photometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two‐Column Aerosol Project. Root‐mean‐square differences from Aerosol Robotic Network ground‐based...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research. D. (Atmospheres), 118(21):12180-12194 118(21):12180-12194, 2013-11, Vol.118 (21), p.12,180-12,194 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12,194 |
---|---|
container_issue | 21 |
container_start_page | 12,180 |
container_title | Journal of Geophysical Research. D. (Atmospheres), 118(21):12180-12194 |
container_volume | 118 |
creator | Shinozuka, Y. Johnson, R. R. Flynn, C. J. Russell, P. B. Schmid, B. Redemann, J. Dunagan, S. E. Kluzek, C. D. Hubbe, J. M. Segal-Rosenheimer, M. Livingston, J. M. Eck, T. F. Wagener, R. Gregory, L. Chand, D. Berg, L. K. Rogers, R. R. Ferrare, R. A. Hair, J. W. Hostetler, C. A. Burton, S. P. |
description | The 4STAR (Spectrometer for Sky‐Scanning, Sun‐Tracking Atmospheric Research), a hyperspectral airborne Sun photometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two‐Column Aerosol Project. Root‐mean‐square differences from Aerosol Robotic Network ground‐based observations were 0.01 at wavelengths between 500–1020 nm, 0.02 at 380 and 1640 nm, and 0.03 at 440 nm in four clear‐sky fly‐over events, and similar in ground side‐by‐side comparisons. Changes in the above‐aircraft AOD across 3 km deep spirals were typically consistent with integrals of coincident in situ (on Department of Energy Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, and 0.02 at 355, 450, 532, 550, 700, and 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350 and 1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to ±0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STAR's spatially resolved high‐frequency hyperspectral products as a reliable tool for climate studies and satellite validation.
Key Points
Our new airborne sunphotometer works
It offers spatially‐resolved high‐frequency hyperspectral products
Consistent with coincident observations of AOD and extinction |
doi_str_mv | 10.1002/2013JD020596 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1492623239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1492623239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4737-fd0cab520f5792775564de3c6e1617b6883e2b404b7c1d4311c36a8e5a4f99f23</originalsourceid><addsrcrecordid>eNp9kM1OGzEURkcVSEXArg8wKqrEogO2r3_GS5SUBARthKjoznIcm5hOxlN7opK3x2FQVHWBN7al832-PkXxCaMzjBA5JwjD9RgRxCT_UBwQzGVVS8n3dmfx62NxnNITyqtGQBk9KPh009mYOmv6qJtS2xhSaMrQ9d7k-8J2_TKVLoZVeT-6mJWu8Y_LPh0V-043yR6_7YfFz8tv96NpdfNjcjW6uKkMFSAqt0BGzxlBjglJhGCM04UFwy3mWMx5XYMlc4roXBi8oICxAa5ryzR1UjoCh8XnoTek3qtkfG_N0oS2zfMqjAkQChk6HaAuhj9rm3q18snYptGtDeukMJWEZxRkRk_-Q5_COrb5CwpzqIHVAolMfR0ok22kaJ3qol_puFEYqa1s9a_sjH95K9UpS3NRt8anXYbUiIB4fRwG7q9v7ObdTnU9uRszJGE7TDWkfOrt8y6l42_Fs2OmHr5P1AzR8e3l3VQ9wAuRPZiV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638358707</pqid></control><display><type>article</type><title>Hyperspectral aerosol optical depths from TCAP flights</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Shinozuka, Y. ; Johnson, R. R. ; Flynn, C. J. ; Russell, P. B. ; Schmid, B. ; Redemann, J. ; Dunagan, S. E. ; Kluzek, C. D. ; Hubbe, J. M. ; Segal-Rosenheimer, M. ; Livingston, J. M. ; Eck, T. F. ; Wagener, R. ; Gregory, L. ; Chand, D. ; Berg, L. K. ; Rogers, R. R. ; Ferrare, R. A. ; Hair, J. W. ; Hostetler, C. A. ; Burton, S. P.</creator><creatorcontrib>Shinozuka, Y. ; Johnson, R. R. ; Flynn, C. J. ; Russell, P. B. ; Schmid, B. ; Redemann, J. ; Dunagan, S. E. ; Kluzek, C. D. ; Hubbe, J. M. ; Segal-Rosenheimer, M. ; Livingston, J. M. ; Eck, T. F. ; Wagener, R. ; Gregory, L. ; Chand, D. ; Berg, L. K. ; Rogers, R. R. ; Ferrare, R. A. ; Hair, J. W. ; Hostetler, C. A. ; Burton, S. P. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>The 4STAR (Spectrometer for Sky‐Scanning, Sun‐Tracking Atmospheric Research), a hyperspectral airborne Sun photometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two‐Column Aerosol Project. Root‐mean‐square differences from Aerosol Robotic Network ground‐based observations were 0.01 at wavelengths between 500–1020 nm, 0.02 at 380 and 1640 nm, and 0.03 at 440 nm in four clear‐sky fly‐over events, and similar in ground side‐by‐side comparisons. Changes in the above‐aircraft AOD across 3 km deep spirals were typically consistent with integrals of coincident in situ (on Department of Energy Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, and 0.02 at 355, 450, 532, 550, 700, and 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350 and 1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to ±0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STAR's spatially resolved high‐frequency hyperspectral products as a reliable tool for climate studies and satellite validation.
Key Points
Our new airborne sunphotometer works
It offers spatially‐resolved high‐frequency hyperspectral products
Consistent with coincident observations of AOD and extinction</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2013JD020596</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>aerosol ; Aerosols ; airborne ; AOD ; Argon oxygen decarburizing ; Atmospheric research ; Atmospherics ; Climate studies ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Extinction ; Fiber optics ; flights ; Geophysics ; hyperspectral ; Lidar ; Meteorology ; optical ; Optical fibers ; Photometers ; sunphotometer ; TCAP ; Uncertainty ; Water vapor ; Wavelengths</subject><ispartof>Journal of Geophysical Research. D. (Atmospheres), 118(21):12180-12194, 2013-11, Vol.118 (21), p.12,180-12,194</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4737-fd0cab520f5792775564de3c6e1617b6883e2b404b7c1d4311c36a8e5a4f99f23</citedby><cites>FETCH-LOGICAL-c4737-fd0cab520f5792775564de3c6e1617b6883e2b404b7c1d4311c36a8e5a4f99f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2013JD020596$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2013JD020596$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28023739$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1123243$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shinozuka, Y.</creatorcontrib><creatorcontrib>Johnson, R. R.</creatorcontrib><creatorcontrib>Flynn, C. J.</creatorcontrib><creatorcontrib>Russell, P. B.</creatorcontrib><creatorcontrib>Schmid, B.</creatorcontrib><creatorcontrib>Redemann, J.</creatorcontrib><creatorcontrib>Dunagan, S. E.</creatorcontrib><creatorcontrib>Kluzek, C. D.</creatorcontrib><creatorcontrib>Hubbe, J. M.</creatorcontrib><creatorcontrib>Segal-Rosenheimer, M.</creatorcontrib><creatorcontrib>Livingston, J. M.</creatorcontrib><creatorcontrib>Eck, T. F.</creatorcontrib><creatorcontrib>Wagener, R.</creatorcontrib><creatorcontrib>Gregory, L.</creatorcontrib><creatorcontrib>Chand, D.</creatorcontrib><creatorcontrib>Berg, L. K.</creatorcontrib><creatorcontrib>Rogers, R. R.</creatorcontrib><creatorcontrib>Ferrare, R. A.</creatorcontrib><creatorcontrib>Hair, J. W.</creatorcontrib><creatorcontrib>Hostetler, C. A.</creatorcontrib><creatorcontrib>Burton, S. P.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Hyperspectral aerosol optical depths from TCAP flights</title><title>Journal of Geophysical Research. D. (Atmospheres), 118(21):12180-12194</title><addtitle>J. Geophys. Res. Atmos</addtitle><description>The 4STAR (Spectrometer for Sky‐Scanning, Sun‐Tracking Atmospheric Research), a hyperspectral airborne Sun photometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two‐Column Aerosol Project. Root‐mean‐square differences from Aerosol Robotic Network ground‐based observations were 0.01 at wavelengths between 500–1020 nm, 0.02 at 380 and 1640 nm, and 0.03 at 440 nm in four clear‐sky fly‐over events, and similar in ground side‐by‐side comparisons. Changes in the above‐aircraft AOD across 3 km deep spirals were typically consistent with integrals of coincident in situ (on Department of Energy Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, and 0.02 at 355, 450, 532, 550, 700, and 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350 and 1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to ±0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STAR's spatially resolved high‐frequency hyperspectral products as a reliable tool for climate studies and satellite validation.
Key Points
Our new airborne sunphotometer works
It offers spatially‐resolved high‐frequency hyperspectral products
Consistent with coincident observations of AOD and extinction</description><subject>aerosol</subject><subject>Aerosols</subject><subject>airborne</subject><subject>AOD</subject><subject>Argon oxygen decarburizing</subject><subject>Atmospheric research</subject><subject>Atmospherics</subject><subject>Climate studies</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Extinction</subject><subject>Fiber optics</subject><subject>flights</subject><subject>Geophysics</subject><subject>hyperspectral</subject><subject>Lidar</subject><subject>Meteorology</subject><subject>optical</subject><subject>Optical fibers</subject><subject>Photometers</subject><subject>sunphotometer</subject><subject>TCAP</subject><subject>Uncertainty</subject><subject>Water vapor</subject><subject>Wavelengths</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OGzEURkcVSEXArg8wKqrEogO2r3_GS5SUBARthKjoznIcm5hOxlN7opK3x2FQVHWBN7al832-PkXxCaMzjBA5JwjD9RgRxCT_UBwQzGVVS8n3dmfx62NxnNITyqtGQBk9KPh009mYOmv6qJtS2xhSaMrQ9d7k-8J2_TKVLoZVeT-6mJWu8Y_LPh0V-043yR6_7YfFz8tv96NpdfNjcjW6uKkMFSAqt0BGzxlBjglJhGCM04UFwy3mWMx5XYMlc4roXBi8oICxAa5ryzR1UjoCh8XnoTek3qtkfG_N0oS2zfMqjAkQChk6HaAuhj9rm3q18snYptGtDeukMJWEZxRkRk_-Q5_COrb5CwpzqIHVAolMfR0ok22kaJ3qol_puFEYqa1s9a_sjH95K9UpS3NRt8anXYbUiIB4fRwG7q9v7ObdTnU9uRszJGE7TDWkfOrt8y6l42_Fs2OmHr5P1AzR8e3l3VQ9wAuRPZiV</recordid><startdate>20131116</startdate><enddate>20131116</enddate><creator>Shinozuka, Y.</creator><creator>Johnson, R. R.</creator><creator>Flynn, C. J.</creator><creator>Russell, P. B.</creator><creator>Schmid, B.</creator><creator>Redemann, J.</creator><creator>Dunagan, S. E.</creator><creator>Kluzek, C. D.</creator><creator>Hubbe, J. M.</creator><creator>Segal-Rosenheimer, M.</creator><creator>Livingston, J. M.</creator><creator>Eck, T. F.</creator><creator>Wagener, R.</creator><creator>Gregory, L.</creator><creator>Chand, D.</creator><creator>Berg, L. K.</creator><creator>Rogers, R. R.</creator><creator>Ferrare, R. A.</creator><creator>Hair, J. W.</creator><creator>Hostetler, C. A.</creator><creator>Burton, S. P.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20131116</creationdate><title>Hyperspectral aerosol optical depths from TCAP flights</title><author>Shinozuka, Y. ; Johnson, R. R. ; Flynn, C. J. ; Russell, P. B. ; Schmid, B. ; Redemann, J. ; Dunagan, S. E. ; Kluzek, C. D. ; Hubbe, J. M. ; Segal-Rosenheimer, M. ; Livingston, J. M. ; Eck, T. F. ; Wagener, R. ; Gregory, L. ; Chand, D. ; Berg, L. K. ; Rogers, R. R. ; Ferrare, R. A. ; Hair, J. W. ; Hostetler, C. A. ; Burton, S. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4737-fd0cab520f5792775564de3c6e1617b6883e2b404b7c1d4311c36a8e5a4f99f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>aerosol</topic><topic>Aerosols</topic><topic>airborne</topic><topic>AOD</topic><topic>Argon oxygen decarburizing</topic><topic>Atmospheric research</topic><topic>Atmospherics</topic><topic>Climate studies</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Extinction</topic><topic>Fiber optics</topic><topic>flights</topic><topic>Geophysics</topic><topic>hyperspectral</topic><topic>Lidar</topic><topic>Meteorology</topic><topic>optical</topic><topic>Optical fibers</topic><topic>Photometers</topic><topic>sunphotometer</topic><topic>TCAP</topic><topic>Uncertainty</topic><topic>Water vapor</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shinozuka, Y.</creatorcontrib><creatorcontrib>Johnson, R. R.</creatorcontrib><creatorcontrib>Flynn, C. J.</creatorcontrib><creatorcontrib>Russell, P. B.</creatorcontrib><creatorcontrib>Schmid, B.</creatorcontrib><creatorcontrib>Redemann, J.</creatorcontrib><creatorcontrib>Dunagan, S. E.</creatorcontrib><creatorcontrib>Kluzek, C. D.</creatorcontrib><creatorcontrib>Hubbe, J. M.</creatorcontrib><creatorcontrib>Segal-Rosenheimer, M.</creatorcontrib><creatorcontrib>Livingston, J. M.</creatorcontrib><creatorcontrib>Eck, T. F.</creatorcontrib><creatorcontrib>Wagener, R.</creatorcontrib><creatorcontrib>Gregory, L.</creatorcontrib><creatorcontrib>Chand, D.</creatorcontrib><creatorcontrib>Berg, L. K.</creatorcontrib><creatorcontrib>Rogers, R. R.</creatorcontrib><creatorcontrib>Ferrare, R. A.</creatorcontrib><creatorcontrib>Hair, J. W.</creatorcontrib><creatorcontrib>Hostetler, C. A.</creatorcontrib><creatorcontrib>Burton, S. P.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of Geophysical Research. D. (Atmospheres), 118(21):12180-12194</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shinozuka, Y.</au><au>Johnson, R. R.</au><au>Flynn, C. J.</au><au>Russell, P. B.</au><au>Schmid, B.</au><au>Redemann, J.</au><au>Dunagan, S. E.</au><au>Kluzek, C. D.</au><au>Hubbe, J. M.</au><au>Segal-Rosenheimer, M.</au><au>Livingston, J. M.</au><au>Eck, T. F.</au><au>Wagener, R.</au><au>Gregory, L.</au><au>Chand, D.</au><au>Berg, L. K.</au><au>Rogers, R. R.</au><au>Ferrare, R. A.</au><au>Hair, J. W.</au><au>Hostetler, C. A.</au><au>Burton, S. P.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral aerosol optical depths from TCAP flights</atitle><jtitle>Journal of Geophysical Research. D. (Atmospheres), 118(21):12180-12194</jtitle><addtitle>J. Geophys. Res. Atmos</addtitle><date>2013-11-16</date><risdate>2013</risdate><volume>118</volume><issue>21</issue><spage>12,180</spage><epage>12,194</epage><pages>12,180-12,194</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>The 4STAR (Spectrometer for Sky‐Scanning, Sun‐Tracking Atmospheric Research), a hyperspectral airborne Sun photometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two‐Column Aerosol Project. Root‐mean‐square differences from Aerosol Robotic Network ground‐based observations were 0.01 at wavelengths between 500–1020 nm, 0.02 at 380 and 1640 nm, and 0.03 at 440 nm in four clear‐sky fly‐over events, and similar in ground side‐by‐side comparisons. Changes in the above‐aircraft AOD across 3 km deep spirals were typically consistent with integrals of coincident in situ (on Department of Energy Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, and 0.02 at 355, 450, 532, 550, 700, and 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350 and 1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to ±0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STAR's spatially resolved high‐frequency hyperspectral products as a reliable tool for climate studies and satellite validation.
Key Points
Our new airborne sunphotometer works
It offers spatially‐resolved high‐frequency hyperspectral products
Consistent with coincident observations of AOD and extinction</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2013JD020596</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of Geophysical Research. D. (Atmospheres), 118(21):12180-12194, 2013-11, Vol.118 (21), p.12,180-12,194 |
issn | 2169-897X 2169-8996 |
language | eng |
recordid | cdi_proquest_miscellaneous_1492623239 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | aerosol Aerosols airborne AOD Argon oxygen decarburizing Atmospheric research Atmospherics Climate studies Earth, ocean, space Exact sciences and technology External geophysics Extinction Fiber optics flights Geophysics hyperspectral Lidar Meteorology optical Optical fibers Photometers sunphotometer TCAP Uncertainty Water vapor Wavelengths |
title | Hyperspectral aerosol optical depths from TCAP flights |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T18%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20aerosol%20optical%20depths%20from%20TCAP%20flights&rft.jtitle=Journal%20of%20Geophysical%20Research.%20D.%20(Atmospheres),%20118(21):12180-12194&rft.au=Shinozuka,%20Y.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2013-11-16&rft.volume=118&rft.issue=21&rft.spage=12,180&rft.epage=12,194&rft.pages=12,180-12,194&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2013JD020596&rft_dat=%3Cproquest_osti_%3E1492623239%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1638358707&rft_id=info:pmid/&rfr_iscdi=true |