A molecular and genetic outline of cardiac morphogenesis
Perturbations in cardiac development result in congenital heart disease, the leading cause of birth defect–related infant morbidity and mortality. Advances in cardiac developmental biology have significantly augmented our understanding of signalling pathways and transcriptional networks underlying h...
Gespeichert in:
Veröffentlicht in: | Acta Physiologica 2013-04, Vol.207 (4), p.588-615 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 615 |
---|---|
container_issue | 4 |
container_start_page | 588 |
container_title | Acta Physiologica |
container_volume | 207 |
creator | Rana, M. S. Christoffels, V. M. Moorman, A. F. M. |
description | Perturbations in cardiac development result in congenital heart disease, the leading cause of birth defect–related infant morbidity and mortality. Advances in cardiac developmental biology have significantly augmented our understanding of signalling pathways and transcriptional networks underlying heart formation. Cardiogenesis is initiated with the formation of mesodermal multipotent cardiac progenitor cells and is governed by cross‐talk between developmental cues emanating from endodermal, mesodermal and ectodermal cells. The molecular and transcriptional machineries that direct the specification and differentiation of these cardiac precursors are part of an evolutionarily conserved programme that includes the Nkx‐, Gata‐, Hand‐, T‐box‐ and Mef2 family of transcription factors. Unravelling the hierarchical networks governing the fate and differentiation of cardiac precursors is crucial for our understanding of congenital heart disease and future stem cell–based and gene therapies. Recent molecular and genetic lineage analyses have revealed that subpopulations of cardiac progenitor cells follow distinctive specification and differentiation paths, which determine their final contribution to the heart. In the last decade, progenitor cells that contribute to the arterial pole and right ventricle have received much attention, as abnormal development of these cells frequently results in congenital defects of the aortic and pulmonary outlets, representing the most commonly occurring congenital cardiac defects. In this review, we provide an overview of the building plan of the vertebrate four‐chambered heart, with a special focus on cardiac progenitor cell specification, differentiation and deployment during arterial pole development. |
doi_str_mv | 10.1111/apha.12061 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1492616335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1315629419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4941-47817fc3d2eec39079d7eb5e9cbb41cf649af9c7982b6197239fb6195ff2f1a33</originalsourceid><addsrcrecordid>eNqF0E9PwyAYBnBiNLrMXfwApokXY1LtCxTKcS66GRf_ZeqRUAqus2snrFG_va2bO3hQLryH3_sEHoQOIDqF5pypxVSdAo4YbKEOcJqEwIFtb-Yo2UM972dRFAEGQjHeRXuYYME5ox2U9IN5VRhdF8oFqsyCF1OaZa6Dql4WeWmCygZauSxXuoFuMa1a4HO_j3asKrzpre8uery8mAxG4fh2eDXoj0NNBYWQ8gS41STDxmgiIi4ybtLYCJ2mFLRlVCgrNBcJThkIjomw7RBbiy0oQrroeJW7cNVbbfxSznOvTVGo0lS1l0AFZsAIif-nBGKGm1eJhh79orOqdmXzkVZxKhgkvFEnK6Vd5b0zVi5cPlfuU0Ik2_Zl2778br_Bh-vIOp2bbEN_um4ArMB7XpjPP6Jk_27U_wkNVzu5X5qPzY5yr5JxwmP5fDOUfHJ9fz55epAJ-QId6pu6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317496187</pqid></control><display><type>article</type><title>A molecular and genetic outline of cardiac morphogenesis</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Rana, M. S. ; Christoffels, V. M. ; Moorman, A. F. M.</creator><creatorcontrib>Rana, M. S. ; Christoffels, V. M. ; Moorman, A. F. M.</creatorcontrib><description>Perturbations in cardiac development result in congenital heart disease, the leading cause of birth defect–related infant morbidity and mortality. Advances in cardiac developmental biology have significantly augmented our understanding of signalling pathways and transcriptional networks underlying heart formation. Cardiogenesis is initiated with the formation of mesodermal multipotent cardiac progenitor cells and is governed by cross‐talk between developmental cues emanating from endodermal, mesodermal and ectodermal cells. The molecular and transcriptional machineries that direct the specification and differentiation of these cardiac precursors are part of an evolutionarily conserved programme that includes the Nkx‐, Gata‐, Hand‐, T‐box‐ and Mef2 family of transcription factors. Unravelling the hierarchical networks governing the fate and differentiation of cardiac precursors is crucial for our understanding of congenital heart disease and future stem cell–based and gene therapies. Recent molecular and genetic lineage analyses have revealed that subpopulations of cardiac progenitor cells follow distinctive specification and differentiation paths, which determine their final contribution to the heart. In the last decade, progenitor cells that contribute to the arterial pole and right ventricle have received much attention, as abnormal development of these cells frequently results in congenital defects of the aortic and pulmonary outlets, representing the most commonly occurring congenital cardiac defects. In this review, we provide an overview of the building plan of the vertebrate four‐chambered heart, with a special focus on cardiac progenitor cell specification, differentiation and deployment during arterial pole development.</description><identifier>ISSN: 1748-1708</identifier><identifier>EISSN: 1748-1716</identifier><identifier>DOI: 10.1111/apha.12061</identifier><identifier>PMID: 23297764</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animals ; Aorta ; arterial pole ; cardiac progenitor cells ; Cardiovascular disease ; Cell Differentiation - physiology ; Cells ; Genes ; Heart ; Heart - embryology ; heart development ; Humans ; Mice ; Models, Animal ; Morphogenesis - genetics ; Morphogenesis - physiology ; Myocardium - cytology ; second heart field ; Signal Transduction - genetics ; Signal Transduction - physiology ; Stem Cells - cytology ; Stem Cells - physiology ; transcriptional regulation</subject><ispartof>Acta Physiologica, 2013-04, Vol.207 (4), p.588-615</ispartof><rights>2013 The Authors Acta Physiologica © 2013 Scandinavian Physiological Society</rights><rights>2013 The Authors Acta Physiologica © 2013 Scandinavian Physiological Society.</rights><rights>Copyright © 2013 Scandinavian Physiological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4941-47817fc3d2eec39079d7eb5e9cbb41cf649af9c7982b6197239fb6195ff2f1a33</citedby><cites>FETCH-LOGICAL-c4941-47817fc3d2eec39079d7eb5e9cbb41cf649af9c7982b6197239fb6195ff2f1a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fapha.12061$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fapha.12061$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,45583,45584</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23297764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rana, M. S.</creatorcontrib><creatorcontrib>Christoffels, V. M.</creatorcontrib><creatorcontrib>Moorman, A. F. M.</creatorcontrib><title>A molecular and genetic outline of cardiac morphogenesis</title><title>Acta Physiologica</title><addtitle>Acta Physiol</addtitle><description>Perturbations in cardiac development result in congenital heart disease, the leading cause of birth defect–related infant morbidity and mortality. Advances in cardiac developmental biology have significantly augmented our understanding of signalling pathways and transcriptional networks underlying heart formation. Cardiogenesis is initiated with the formation of mesodermal multipotent cardiac progenitor cells and is governed by cross‐talk between developmental cues emanating from endodermal, mesodermal and ectodermal cells. The molecular and transcriptional machineries that direct the specification and differentiation of these cardiac precursors are part of an evolutionarily conserved programme that includes the Nkx‐, Gata‐, Hand‐, T‐box‐ and Mef2 family of transcription factors. Unravelling the hierarchical networks governing the fate and differentiation of cardiac precursors is crucial for our understanding of congenital heart disease and future stem cell–based and gene therapies. Recent molecular and genetic lineage analyses have revealed that subpopulations of cardiac progenitor cells follow distinctive specification and differentiation paths, which determine their final contribution to the heart. In the last decade, progenitor cells that contribute to the arterial pole and right ventricle have received much attention, as abnormal development of these cells frequently results in congenital defects of the aortic and pulmonary outlets, representing the most commonly occurring congenital cardiac defects. In this review, we provide an overview of the building plan of the vertebrate four‐chambered heart, with a special focus on cardiac progenitor cell specification, differentiation and deployment during arterial pole development.</description><subject>Animals</subject><subject>Aorta</subject><subject>arterial pole</subject><subject>cardiac progenitor cells</subject><subject>Cardiovascular disease</subject><subject>Cell Differentiation - physiology</subject><subject>Cells</subject><subject>Genes</subject><subject>Heart</subject><subject>Heart - embryology</subject><subject>heart development</subject><subject>Humans</subject><subject>Mice</subject><subject>Models, Animal</subject><subject>Morphogenesis - genetics</subject><subject>Morphogenesis - physiology</subject><subject>Myocardium - cytology</subject><subject>second heart field</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - physiology</subject><subject>transcriptional regulation</subject><issn>1748-1708</issn><issn>1748-1716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E9PwyAYBnBiNLrMXfwApokXY1LtCxTKcS66GRf_ZeqRUAqus2snrFG_va2bO3hQLryH3_sEHoQOIDqF5pypxVSdAo4YbKEOcJqEwIFtb-Yo2UM972dRFAEGQjHeRXuYYME5ox2U9IN5VRhdF8oFqsyCF1OaZa6Dql4WeWmCygZauSxXuoFuMa1a4HO_j3asKrzpre8uery8mAxG4fh2eDXoj0NNBYWQ8gS41STDxmgiIi4ybtLYCJ2mFLRlVCgrNBcJThkIjomw7RBbiy0oQrroeJW7cNVbbfxSznOvTVGo0lS1l0AFZsAIif-nBGKGm1eJhh79orOqdmXzkVZxKhgkvFEnK6Vd5b0zVi5cPlfuU0Ik2_Zl2778br_Bh-vIOp2bbEN_um4ArMB7XpjPP6Jk_27U_wkNVzu5X5qPzY5yr5JxwmP5fDOUfHJ9fz55epAJ-QId6pu6</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Rana, M. S.</creator><creator>Christoffels, V. M.</creator><creator>Moorman, A. F. M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TS</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201304</creationdate><title>A molecular and genetic outline of cardiac morphogenesis</title><author>Rana, M. S. ; Christoffels, V. M. ; Moorman, A. F. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4941-47817fc3d2eec39079d7eb5e9cbb41cf649af9c7982b6197239fb6195ff2f1a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Aorta</topic><topic>arterial pole</topic><topic>cardiac progenitor cells</topic><topic>Cardiovascular disease</topic><topic>Cell Differentiation - physiology</topic><topic>Cells</topic><topic>Genes</topic><topic>Heart</topic><topic>Heart - embryology</topic><topic>heart development</topic><topic>Humans</topic><topic>Mice</topic><topic>Models, Animal</topic><topic>Morphogenesis - genetics</topic><topic>Morphogenesis - physiology</topic><topic>Myocardium - cytology</topic><topic>second heart field</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - physiology</topic><topic>transcriptional regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rana, M. S.</creatorcontrib><creatorcontrib>Christoffels, V. M.</creatorcontrib><creatorcontrib>Moorman, A. F. M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Acta Physiologica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rana, M. S.</au><au>Christoffels, V. M.</au><au>Moorman, A. F. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A molecular and genetic outline of cardiac morphogenesis</atitle><jtitle>Acta Physiologica</jtitle><addtitle>Acta Physiol</addtitle><date>2013-04</date><risdate>2013</risdate><volume>207</volume><issue>4</issue><spage>588</spage><epage>615</epage><pages>588-615</pages><issn>1748-1708</issn><eissn>1748-1716</eissn><abstract>Perturbations in cardiac development result in congenital heart disease, the leading cause of birth defect–related infant morbidity and mortality. Advances in cardiac developmental biology have significantly augmented our understanding of signalling pathways and transcriptional networks underlying heart formation. Cardiogenesis is initiated with the formation of mesodermal multipotent cardiac progenitor cells and is governed by cross‐talk between developmental cues emanating from endodermal, mesodermal and ectodermal cells. The molecular and transcriptional machineries that direct the specification and differentiation of these cardiac precursors are part of an evolutionarily conserved programme that includes the Nkx‐, Gata‐, Hand‐, T‐box‐ and Mef2 family of transcription factors. Unravelling the hierarchical networks governing the fate and differentiation of cardiac precursors is crucial for our understanding of congenital heart disease and future stem cell–based and gene therapies. Recent molecular and genetic lineage analyses have revealed that subpopulations of cardiac progenitor cells follow distinctive specification and differentiation paths, which determine their final contribution to the heart. In the last decade, progenitor cells that contribute to the arterial pole and right ventricle have received much attention, as abnormal development of these cells frequently results in congenital defects of the aortic and pulmonary outlets, representing the most commonly occurring congenital cardiac defects. In this review, we provide an overview of the building plan of the vertebrate four‐chambered heart, with a special focus on cardiac progenitor cell specification, differentiation and deployment during arterial pole development.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>23297764</pmid><doi>10.1111/apha.12061</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-1708 |
ispartof | Acta Physiologica, 2013-04, Vol.207 (4), p.588-615 |
issn | 1748-1708 1748-1716 |
language | eng |
recordid | cdi_proquest_miscellaneous_1492616335 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Animals Aorta arterial pole cardiac progenitor cells Cardiovascular disease Cell Differentiation - physiology Cells Genes Heart Heart - embryology heart development Humans Mice Models, Animal Morphogenesis - genetics Morphogenesis - physiology Myocardium - cytology second heart field Signal Transduction - genetics Signal Transduction - physiology Stem Cells - cytology Stem Cells - physiology transcriptional regulation |
title | A molecular and genetic outline of cardiac morphogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T09%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20molecular%20and%20genetic%20outline%20of%20cardiac%20morphogenesis&rft.jtitle=Acta%20Physiologica&rft.au=Rana,%20M.%20S.&rft.date=2013-04&rft.volume=207&rft.issue=4&rft.spage=588&rft.epage=615&rft.pages=588-615&rft.issn=1748-1708&rft.eissn=1748-1716&rft_id=info:doi/10.1111/apha.12061&rft_dat=%3Cproquest_cross%3E1315629419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1317496187&rft_id=info:pmid/23297764&rfr_iscdi=true |