A molecular and genetic outline of cardiac morphogenesis

Perturbations in cardiac development result in congenital heart disease, the leading cause of birth defect–related infant morbidity and mortality. Advances in cardiac developmental biology have significantly augmented our understanding of signalling pathways and transcriptional networks underlying h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta Physiologica 2013-04, Vol.207 (4), p.588-615
Hauptverfasser: Rana, M. S., Christoffels, V. M., Moorman, A. F. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 615
container_issue 4
container_start_page 588
container_title Acta Physiologica
container_volume 207
creator Rana, M. S.
Christoffels, V. M.
Moorman, A. F. M.
description Perturbations in cardiac development result in congenital heart disease, the leading cause of birth defect–related infant morbidity and mortality. Advances in cardiac developmental biology have significantly augmented our understanding of signalling pathways and transcriptional networks underlying heart formation. Cardiogenesis is initiated with the formation of mesodermal multipotent cardiac progenitor cells and is governed by cross‐talk between developmental cues emanating from endodermal, mesodermal and ectodermal cells. The molecular and transcriptional machineries that direct the specification and differentiation of these cardiac precursors are part of an evolutionarily conserved programme that includes the Nkx‐, Gata‐, Hand‐, T‐box‐ and Mef2 family of transcription factors. Unravelling the hierarchical networks governing the fate and differentiation of cardiac precursors is crucial for our understanding of congenital heart disease and future stem cell–based and gene therapies. Recent molecular and genetic lineage analyses have revealed that subpopulations of cardiac progenitor cells follow distinctive specification and differentiation paths, which determine their final contribution to the heart. In the last decade, progenitor cells that contribute to the arterial pole and right ventricle have received much attention, as abnormal development of these cells frequently results in congenital defects of the aortic and pulmonary outlets, representing the most commonly occurring congenital cardiac defects. In this review, we provide an overview of the building plan of the vertebrate four‐chambered heart, with a special focus on cardiac progenitor cell specification, differentiation and deployment during arterial pole development.
doi_str_mv 10.1111/apha.12061
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1492616335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1315629419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4941-47817fc3d2eec39079d7eb5e9cbb41cf649af9c7982b6197239fb6195ff2f1a33</originalsourceid><addsrcrecordid>eNqF0E9PwyAYBnBiNLrMXfwApokXY1LtCxTKcS66GRf_ZeqRUAqus2snrFG_va2bO3hQLryH3_sEHoQOIDqF5pypxVSdAo4YbKEOcJqEwIFtb-Yo2UM972dRFAEGQjHeRXuYYME5ox2U9IN5VRhdF8oFqsyCF1OaZa6Dql4WeWmCygZauSxXuoFuMa1a4HO_j3asKrzpre8uery8mAxG4fh2eDXoj0NNBYWQ8gS41STDxmgiIi4ybtLYCJ2mFLRlVCgrNBcJThkIjomw7RBbiy0oQrroeJW7cNVbbfxSznOvTVGo0lS1l0AFZsAIif-nBGKGm1eJhh79orOqdmXzkVZxKhgkvFEnK6Vd5b0zVi5cPlfuU0Ik2_Zl2778br_Bh-vIOp2bbEN_um4ArMB7XpjPP6Jk_27U_wkNVzu5X5qPzY5yr5JxwmP5fDOUfHJ9fz55epAJ-QId6pu6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317496187</pqid></control><display><type>article</type><title>A molecular and genetic outline of cardiac morphogenesis</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Rana, M. S. ; Christoffels, V. M. ; Moorman, A. F. M.</creator><creatorcontrib>Rana, M. S. ; Christoffels, V. M. ; Moorman, A. F. M.</creatorcontrib><description>Perturbations in cardiac development result in congenital heart disease, the leading cause of birth defect–related infant morbidity and mortality. Advances in cardiac developmental biology have significantly augmented our understanding of signalling pathways and transcriptional networks underlying heart formation. Cardiogenesis is initiated with the formation of mesodermal multipotent cardiac progenitor cells and is governed by cross‐talk between developmental cues emanating from endodermal, mesodermal and ectodermal cells. The molecular and transcriptional machineries that direct the specification and differentiation of these cardiac precursors are part of an evolutionarily conserved programme that includes the Nkx‐, Gata‐, Hand‐, T‐box‐ and Mef2 family of transcription factors. Unravelling the hierarchical networks governing the fate and differentiation of cardiac precursors is crucial for our understanding of congenital heart disease and future stem cell–based and gene therapies. Recent molecular and genetic lineage analyses have revealed that subpopulations of cardiac progenitor cells follow distinctive specification and differentiation paths, which determine their final contribution to the heart. In the last decade, progenitor cells that contribute to the arterial pole and right ventricle have received much attention, as abnormal development of these cells frequently results in congenital defects of the aortic and pulmonary outlets, representing the most commonly occurring congenital cardiac defects. In this review, we provide an overview of the building plan of the vertebrate four‐chambered heart, with a special focus on cardiac progenitor cell specification, differentiation and deployment during arterial pole development.</description><identifier>ISSN: 1748-1708</identifier><identifier>EISSN: 1748-1716</identifier><identifier>DOI: 10.1111/apha.12061</identifier><identifier>PMID: 23297764</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animals ; Aorta ; arterial pole ; cardiac progenitor cells ; Cardiovascular disease ; Cell Differentiation - physiology ; Cells ; Genes ; Heart ; Heart - embryology ; heart development ; Humans ; Mice ; Models, Animal ; Morphogenesis - genetics ; Morphogenesis - physiology ; Myocardium - cytology ; second heart field ; Signal Transduction - genetics ; Signal Transduction - physiology ; Stem Cells - cytology ; Stem Cells - physiology ; transcriptional regulation</subject><ispartof>Acta Physiologica, 2013-04, Vol.207 (4), p.588-615</ispartof><rights>2013 The Authors Acta Physiologica © 2013 Scandinavian Physiological Society</rights><rights>2013 The Authors Acta Physiologica © 2013 Scandinavian Physiological Society.</rights><rights>Copyright © 2013 Scandinavian Physiological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4941-47817fc3d2eec39079d7eb5e9cbb41cf649af9c7982b6197239fb6195ff2f1a33</citedby><cites>FETCH-LOGICAL-c4941-47817fc3d2eec39079d7eb5e9cbb41cf649af9c7982b6197239fb6195ff2f1a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fapha.12061$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fapha.12061$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,45583,45584</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23297764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rana, M. S.</creatorcontrib><creatorcontrib>Christoffels, V. M.</creatorcontrib><creatorcontrib>Moorman, A. F. M.</creatorcontrib><title>A molecular and genetic outline of cardiac morphogenesis</title><title>Acta Physiologica</title><addtitle>Acta Physiol</addtitle><description>Perturbations in cardiac development result in congenital heart disease, the leading cause of birth defect–related infant morbidity and mortality. Advances in cardiac developmental biology have significantly augmented our understanding of signalling pathways and transcriptional networks underlying heart formation. Cardiogenesis is initiated with the formation of mesodermal multipotent cardiac progenitor cells and is governed by cross‐talk between developmental cues emanating from endodermal, mesodermal and ectodermal cells. The molecular and transcriptional machineries that direct the specification and differentiation of these cardiac precursors are part of an evolutionarily conserved programme that includes the Nkx‐, Gata‐, Hand‐, T‐box‐ and Mef2 family of transcription factors. Unravelling the hierarchical networks governing the fate and differentiation of cardiac precursors is crucial for our understanding of congenital heart disease and future stem cell–based and gene therapies. Recent molecular and genetic lineage analyses have revealed that subpopulations of cardiac progenitor cells follow distinctive specification and differentiation paths, which determine their final contribution to the heart. In the last decade, progenitor cells that contribute to the arterial pole and right ventricle have received much attention, as abnormal development of these cells frequently results in congenital defects of the aortic and pulmonary outlets, representing the most commonly occurring congenital cardiac defects. In this review, we provide an overview of the building plan of the vertebrate four‐chambered heart, with a special focus on cardiac progenitor cell specification, differentiation and deployment during arterial pole development.</description><subject>Animals</subject><subject>Aorta</subject><subject>arterial pole</subject><subject>cardiac progenitor cells</subject><subject>Cardiovascular disease</subject><subject>Cell Differentiation - physiology</subject><subject>Cells</subject><subject>Genes</subject><subject>Heart</subject><subject>Heart - embryology</subject><subject>heart development</subject><subject>Humans</subject><subject>Mice</subject><subject>Models, Animal</subject><subject>Morphogenesis - genetics</subject><subject>Morphogenesis - physiology</subject><subject>Myocardium - cytology</subject><subject>second heart field</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - physiology</subject><subject>transcriptional regulation</subject><issn>1748-1708</issn><issn>1748-1716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E9PwyAYBnBiNLrMXfwApokXY1LtCxTKcS66GRf_ZeqRUAqus2snrFG_va2bO3hQLryH3_sEHoQOIDqF5pypxVSdAo4YbKEOcJqEwIFtb-Yo2UM972dRFAEGQjHeRXuYYME5ox2U9IN5VRhdF8oFqsyCF1OaZa6Dql4WeWmCygZauSxXuoFuMa1a4HO_j3asKrzpre8uery8mAxG4fh2eDXoj0NNBYWQ8gS41STDxmgiIi4ybtLYCJ2mFLRlVCgrNBcJThkIjomw7RBbiy0oQrroeJW7cNVbbfxSznOvTVGo0lS1l0AFZsAIif-nBGKGm1eJhh79orOqdmXzkVZxKhgkvFEnK6Vd5b0zVi5cPlfuU0Ik2_Zl2778br_Bh-vIOp2bbEN_um4ArMB7XpjPP6Jk_27U_wkNVzu5X5qPzY5yr5JxwmP5fDOUfHJ9fz55epAJ-QId6pu6</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Rana, M. S.</creator><creator>Christoffels, V. M.</creator><creator>Moorman, A. F. M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TS</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201304</creationdate><title>A molecular and genetic outline of cardiac morphogenesis</title><author>Rana, M. S. ; Christoffels, V. M. ; Moorman, A. F. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4941-47817fc3d2eec39079d7eb5e9cbb41cf649af9c7982b6197239fb6195ff2f1a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Aorta</topic><topic>arterial pole</topic><topic>cardiac progenitor cells</topic><topic>Cardiovascular disease</topic><topic>Cell Differentiation - physiology</topic><topic>Cells</topic><topic>Genes</topic><topic>Heart</topic><topic>Heart - embryology</topic><topic>heart development</topic><topic>Humans</topic><topic>Mice</topic><topic>Models, Animal</topic><topic>Morphogenesis - genetics</topic><topic>Morphogenesis - physiology</topic><topic>Myocardium - cytology</topic><topic>second heart field</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - physiology</topic><topic>transcriptional regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rana, M. S.</creatorcontrib><creatorcontrib>Christoffels, V. M.</creatorcontrib><creatorcontrib>Moorman, A. F. M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Acta Physiologica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rana, M. S.</au><au>Christoffels, V. M.</au><au>Moorman, A. F. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A molecular and genetic outline of cardiac morphogenesis</atitle><jtitle>Acta Physiologica</jtitle><addtitle>Acta Physiol</addtitle><date>2013-04</date><risdate>2013</risdate><volume>207</volume><issue>4</issue><spage>588</spage><epage>615</epage><pages>588-615</pages><issn>1748-1708</issn><eissn>1748-1716</eissn><abstract>Perturbations in cardiac development result in congenital heart disease, the leading cause of birth defect–related infant morbidity and mortality. Advances in cardiac developmental biology have significantly augmented our understanding of signalling pathways and transcriptional networks underlying heart formation. Cardiogenesis is initiated with the formation of mesodermal multipotent cardiac progenitor cells and is governed by cross‐talk between developmental cues emanating from endodermal, mesodermal and ectodermal cells. The molecular and transcriptional machineries that direct the specification and differentiation of these cardiac precursors are part of an evolutionarily conserved programme that includes the Nkx‐, Gata‐, Hand‐, T‐box‐ and Mef2 family of transcription factors. Unravelling the hierarchical networks governing the fate and differentiation of cardiac precursors is crucial for our understanding of congenital heart disease and future stem cell–based and gene therapies. Recent molecular and genetic lineage analyses have revealed that subpopulations of cardiac progenitor cells follow distinctive specification and differentiation paths, which determine their final contribution to the heart. In the last decade, progenitor cells that contribute to the arterial pole and right ventricle have received much attention, as abnormal development of these cells frequently results in congenital defects of the aortic and pulmonary outlets, representing the most commonly occurring congenital cardiac defects. In this review, we provide an overview of the building plan of the vertebrate four‐chambered heart, with a special focus on cardiac progenitor cell specification, differentiation and deployment during arterial pole development.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>23297764</pmid><doi>10.1111/apha.12061</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-1708
ispartof Acta Physiologica, 2013-04, Vol.207 (4), p.588-615
issn 1748-1708
1748-1716
language eng
recordid cdi_proquest_miscellaneous_1492616335
source MEDLINE; Access via Wiley Online Library
subjects Animals
Aorta
arterial pole
cardiac progenitor cells
Cardiovascular disease
Cell Differentiation - physiology
Cells
Genes
Heart
Heart - embryology
heart development
Humans
Mice
Models, Animal
Morphogenesis - genetics
Morphogenesis - physiology
Myocardium - cytology
second heart field
Signal Transduction - genetics
Signal Transduction - physiology
Stem Cells - cytology
Stem Cells - physiology
transcriptional regulation
title A molecular and genetic outline of cardiac morphogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T09%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20molecular%20and%20genetic%20outline%20of%20cardiac%20morphogenesis&rft.jtitle=Acta%20Physiologica&rft.au=Rana,%20M.%20S.&rft.date=2013-04&rft.volume=207&rft.issue=4&rft.spage=588&rft.epage=615&rft.pages=588-615&rft.issn=1748-1708&rft.eissn=1748-1716&rft_id=info:doi/10.1111/apha.12061&rft_dat=%3Cproquest_cross%3E1315629419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1317496187&rft_id=info:pmid/23297764&rfr_iscdi=true