Estimating Nonresponse Bias in a Telephone-based Health Surveillance Survey in New York City
Despite concerns about nonresponse bias due to decreasing response rates, telephone surveys remain a viable option for conducting local population-based surveillance. However, this becomes problematic for urban populations, which typically have higher nonresponse rates. Unfortunately, traditional me...
Gespeichert in:
Veröffentlicht in: | American journal of epidemiology 2013-10, Vol.178 (8), p.1337-1341 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1341 |
---|---|
container_issue | 8 |
container_start_page | 1337 |
container_title | American journal of epidemiology |
container_volume | 178 |
creator | SUNGWOO LIM IMMERWAHR, Stephen SUNGHEE LEE HARRIS, Tiffany G |
description | Despite concerns about nonresponse bias due to decreasing response rates, telephone surveys remain a viable option for conducting local population-based surveillance. However, this becomes problematic for urban populations, which typically have higher nonresponse rates. Unfortunately, traditional methods of evaluating nonresponse bias pose challenges for public health practitioners due to high costs. In this study, we sought to increase understanding of survey nonresponse at the zip code level in an urban area and to demonstrate the use of a practical tool for assessing nonresponse bias. Data from the 2008 New York City Community Health Survey, a landline telephone survey of residential households in New York, New York, were matched with zip-code-level data from the 2000 US Census. Although response rates varied across zip codes and zip-code-level sociodemographic characteristics, estimated nonresponse bias for the 5 health measures (general health status, current health insurance coverage, asthma, binge drinking, and physical activity) was not substantial (ranging from -3.8% to 2.4%). Findings confirmed previous research that survey participation rates can vary a great deal across small areas and that there is no direct relationship between response rates and nonresponse bias. This study highlights the importance of assessing nonresponse bias for local urban surveys and demonstrates a workable assessment tool. |
doi_str_mv | 10.1093/aje/kwt121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1492610176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1443420841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-3850c6b2fba46bcbfaf5841dc24e8ab1819f9badf0a428f91fe95f3d14593a313</originalsourceid><addsrcrecordid>eNqN0V1LwzAUBuAgis6PG3-ABEQQoS4nSbvkUodfIHqhXghCSdsT7ezambSO_XtTNhW88ioEHt7knJeQfWCnwLQYmgkO3-ctcFgjA5CjJEp4nKyTAWOMR5onfItsez9hDEDHbJNscaFVDFwPyMuFb8upacv6ld41tUM_a2qP9Lw0npY1NfQRK5y9NTVGmfFY0Gs0VftGHzr3iWVVmTrH5WXR-zuc0-fGvdNx2S52yYY1lce91blDni4vHsfX0e391c347DbKxUi1kVAxy5OM28zIJMsza2ysJBQ5l6hMBgq01ZkpLDOSK6vBoo6tKEDGWhgBYoccL3Nnrvno0LfptPQ59p_DpvMpyLAEYDBK_kGlkJyF5wM9_EMnTefqMEivtNSK8z7wZKly13jv0KYzFxbqFimwtK8nDfWky3oCPlhFdtkUix_63UcARytgfG4q68J6S__rRipRKkz8BcR6l_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449498226</pqid></control><display><type>article</type><title>Estimating Nonresponse Bias in a Telephone-based Health Surveillance Survey in New York City</title><source>MEDLINE</source><source>OUP_牛津大学出版社现刊</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><creator>SUNGWOO LIM ; IMMERWAHR, Stephen ; SUNGHEE LEE ; HARRIS, Tiffany G</creator><creatorcontrib>SUNGWOO LIM ; IMMERWAHR, Stephen ; SUNGHEE LEE ; HARRIS, Tiffany G</creatorcontrib><description>Despite concerns about nonresponse bias due to decreasing response rates, telephone surveys remain a viable option for conducting local population-based surveillance. However, this becomes problematic for urban populations, which typically have higher nonresponse rates. Unfortunately, traditional methods of evaluating nonresponse bias pose challenges for public health practitioners due to high costs. In this study, we sought to increase understanding of survey nonresponse at the zip code level in an urban area and to demonstrate the use of a practical tool for assessing nonresponse bias. Data from the 2008 New York City Community Health Survey, a landline telephone survey of residential households in New York, New York, were matched with zip-code-level data from the 2000 US Census. Although response rates varied across zip codes and zip-code-level sociodemographic characteristics, estimated nonresponse bias for the 5 health measures (general health status, current health insurance coverage, asthma, binge drinking, and physical activity) was not substantial (ranging from -3.8% to 2.4%). Findings confirmed previous research that survey participation rates can vary a great deal across small areas and that there is no direct relationship between response rates and nonresponse bias. This study highlights the importance of assessing nonresponse bias for local urban surveys and demonstrates a workable assessment tool.</description><identifier>ISSN: 0002-9262</identifier><identifier>EISSN: 1476-6256</identifier><identifier>DOI: 10.1093/aje/kwt121</identifier><identifier>PMID: 23985129</identifier><identifier>CODEN: AJEPAS</identifier><language>eng</language><publisher>Cary, NC: Oxford University Press</publisher><subject>Bias ; Biological and medical sciences ; Data Collection - methods ; Epidemiology ; General aspects ; Humans ; Medical sciences ; Miscellaneous ; New York City ; Polls & surveys ; Population Surveillance - methods ; Public health. Hygiene ; Public health. Hygiene-occupational medicine ; Response rates ; Telephone ; Urban areas</subject><ispartof>American journal of epidemiology, 2013-10, Vol.178 (8), p.1337-1341</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright Oxford Publishing Limited(England) Oct 15, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-3850c6b2fba46bcbfaf5841dc24e8ab1819f9badf0a428f91fe95f3d14593a313</citedby><cites>FETCH-LOGICAL-c378t-3850c6b2fba46bcbfaf5841dc24e8ab1819f9badf0a428f91fe95f3d14593a313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27868831$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23985129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>SUNGWOO LIM</creatorcontrib><creatorcontrib>IMMERWAHR, Stephen</creatorcontrib><creatorcontrib>SUNGHEE LEE</creatorcontrib><creatorcontrib>HARRIS, Tiffany G</creatorcontrib><title>Estimating Nonresponse Bias in a Telephone-based Health Surveillance Survey in New York City</title><title>American journal of epidemiology</title><addtitle>Am J Epidemiol</addtitle><description>Despite concerns about nonresponse bias due to decreasing response rates, telephone surveys remain a viable option for conducting local population-based surveillance. However, this becomes problematic for urban populations, which typically have higher nonresponse rates. Unfortunately, traditional methods of evaluating nonresponse bias pose challenges for public health practitioners due to high costs. In this study, we sought to increase understanding of survey nonresponse at the zip code level in an urban area and to demonstrate the use of a practical tool for assessing nonresponse bias. Data from the 2008 New York City Community Health Survey, a landline telephone survey of residential households in New York, New York, were matched with zip-code-level data from the 2000 US Census. Although response rates varied across zip codes and zip-code-level sociodemographic characteristics, estimated nonresponse bias for the 5 health measures (general health status, current health insurance coverage, asthma, binge drinking, and physical activity) was not substantial (ranging from -3.8% to 2.4%). Findings confirmed previous research that survey participation rates can vary a great deal across small areas and that there is no direct relationship between response rates and nonresponse bias. This study highlights the importance of assessing nonresponse bias for local urban surveys and demonstrates a workable assessment tool.</description><subject>Bias</subject><subject>Biological and medical sciences</subject><subject>Data Collection - methods</subject><subject>Epidemiology</subject><subject>General aspects</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Miscellaneous</subject><subject>New York City</subject><subject>Polls & surveys</subject><subject>Population Surveillance - methods</subject><subject>Public health. Hygiene</subject><subject>Public health. Hygiene-occupational medicine</subject><subject>Response rates</subject><subject>Telephone</subject><subject>Urban areas</subject><issn>0002-9262</issn><issn>1476-6256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0V1LwzAUBuAgis6PG3-ABEQQoS4nSbvkUodfIHqhXghCSdsT7ezambSO_XtTNhW88ioEHt7knJeQfWCnwLQYmgkO3-ctcFgjA5CjJEp4nKyTAWOMR5onfItsez9hDEDHbJNscaFVDFwPyMuFb8upacv6ld41tUM_a2qP9Lw0npY1NfQRK5y9NTVGmfFY0Gs0VftGHzr3iWVVmTrH5WXR-zuc0-fGvdNx2S52yYY1lce91blDni4vHsfX0e391c347DbKxUi1kVAxy5OM28zIJMsza2ysJBQ5l6hMBgq01ZkpLDOSK6vBoo6tKEDGWhgBYoccL3Nnrvno0LfptPQ59p_DpvMpyLAEYDBK_kGlkJyF5wM9_EMnTefqMEivtNSK8z7wZKly13jv0KYzFxbqFimwtK8nDfWky3oCPlhFdtkUix_63UcARytgfG4q68J6S__rRipRKkz8BcR6l_A</recordid><startdate>20131015</startdate><enddate>20131015</enddate><creator>SUNGWOO LIM</creator><creator>IMMERWAHR, Stephen</creator><creator>SUNGHEE LEE</creator><creator>HARRIS, Tiffany G</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T2</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20131015</creationdate><title>Estimating Nonresponse Bias in a Telephone-based Health Surveillance Survey in New York City</title><author>SUNGWOO LIM ; IMMERWAHR, Stephen ; SUNGHEE LEE ; HARRIS, Tiffany G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-3850c6b2fba46bcbfaf5841dc24e8ab1819f9badf0a428f91fe95f3d14593a313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bias</topic><topic>Biological and medical sciences</topic><topic>Data Collection - methods</topic><topic>Epidemiology</topic><topic>General aspects</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Miscellaneous</topic><topic>New York City</topic><topic>Polls & surveys</topic><topic>Population Surveillance - methods</topic><topic>Public health. Hygiene</topic><topic>Public health. Hygiene-occupational medicine</topic><topic>Response rates</topic><topic>Telephone</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SUNGWOO LIM</creatorcontrib><creatorcontrib>IMMERWAHR, Stephen</creatorcontrib><creatorcontrib>SUNGHEE LEE</creatorcontrib><creatorcontrib>HARRIS, Tiffany G</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SUNGWOO LIM</au><au>IMMERWAHR, Stephen</au><au>SUNGHEE LEE</au><au>HARRIS, Tiffany G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Nonresponse Bias in a Telephone-based Health Surveillance Survey in New York City</atitle><jtitle>American journal of epidemiology</jtitle><addtitle>Am J Epidemiol</addtitle><date>2013-10-15</date><risdate>2013</risdate><volume>178</volume><issue>8</issue><spage>1337</spage><epage>1341</epage><pages>1337-1341</pages><issn>0002-9262</issn><eissn>1476-6256</eissn><coden>AJEPAS</coden><abstract>Despite concerns about nonresponse bias due to decreasing response rates, telephone surveys remain a viable option for conducting local population-based surveillance. However, this becomes problematic for urban populations, which typically have higher nonresponse rates. Unfortunately, traditional methods of evaluating nonresponse bias pose challenges for public health practitioners due to high costs. In this study, we sought to increase understanding of survey nonresponse at the zip code level in an urban area and to demonstrate the use of a practical tool for assessing nonresponse bias. Data from the 2008 New York City Community Health Survey, a landline telephone survey of residential households in New York, New York, were matched with zip-code-level data from the 2000 US Census. Although response rates varied across zip codes and zip-code-level sociodemographic characteristics, estimated nonresponse bias for the 5 health measures (general health status, current health insurance coverage, asthma, binge drinking, and physical activity) was not substantial (ranging from -3.8% to 2.4%). Findings confirmed previous research that survey participation rates can vary a great deal across small areas and that there is no direct relationship between response rates and nonresponse bias. This study highlights the importance of assessing nonresponse bias for local urban surveys and demonstrates a workable assessment tool.</abstract><cop>Cary, NC</cop><pub>Oxford University Press</pub><pmid>23985129</pmid><doi>10.1093/aje/kwt121</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9262 |
ispartof | American journal of epidemiology, 2013-10, Vol.178 (8), p.1337-1341 |
issn | 0002-9262 1476-6256 |
language | eng |
recordid | cdi_proquest_miscellaneous_1492610176 |
source | MEDLINE; OUP_牛津大学出版社现刊; Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection |
subjects | Bias Biological and medical sciences Data Collection - methods Epidemiology General aspects Humans Medical sciences Miscellaneous New York City Polls & surveys Population Surveillance - methods Public health. Hygiene Public health. Hygiene-occupational medicine Response rates Telephone Urban areas |
title | Estimating Nonresponse Bias in a Telephone-based Health Surveillance Survey in New York City |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Nonresponse%20Bias%20in%20a%20Telephone-based%20Health%20Surveillance%20Survey%20in%20New%20York%20City&rft.jtitle=American%20journal%20of%20epidemiology&rft.au=SUNGWOO%20LIM&rft.date=2013-10-15&rft.volume=178&rft.issue=8&rft.spage=1337&rft.epage=1341&rft.pages=1337-1341&rft.issn=0002-9262&rft.eissn=1476-6256&rft.coden=AJEPAS&rft_id=info:doi/10.1093/aje/kwt121&rft_dat=%3Cproquest_cross%3E1443420841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449498226&rft_id=info:pmid/23985129&rfr_iscdi=true |