Mechanisms of acetylcholine-mediated vasodilation in systemic arteries from mourning doves (Zenaida macroura)

For mammals, acetylcholine (ACh) promotes endothelium-dependent vasodilation primarily through nitric oxide (NO) and prostaglandin-mediated pathways, with varying reliance on endothelial-derived hyperpolarizing factors. Currently, no studies have been conducted on small systemic arteries from wild b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology Biochemical, systemic, and environmental physiology, 2013-10, Vol.183 (7), p.959-967
Hauptverfasser: Jarrett, Catherine, Lekic, Mateja, Smith, Christina L., Pusec, Carolina M., Sweazea, Karen L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 967
container_issue 7
container_start_page 959
container_title Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology
container_volume 183
creator Jarrett, Catherine
Lekic, Mateja
Smith, Christina L.
Pusec, Carolina M.
Sweazea, Karen L.
description For mammals, acetylcholine (ACh) promotes endothelium-dependent vasodilation primarily through nitric oxide (NO) and prostaglandin-mediated pathways, with varying reliance on endothelial-derived hyperpolarizing factors. Currently, no studies have been conducted on small systemic arteries from wild birds. We hypothesized that ACh-mediated vasodilation of isolated small arteries from mourning doves ( Zenaida macroura ) would likewise depend on endothelial-derived factors. Small resistance mesenteric and cranial tibial (c. tibial) arteries (80–150 μm, inner diameter) were cannulated and pre-constricted to 50 % of resting inner diameter with phenylephrine then exposed to increasing concentrations of ACh (10 −9 –10 −5  M) or the NO donor, sodium nitroprusside (SNP; 10 −12 –10 −3  M). For mesenteric arteries, ACh-mediated vasodilation was significantly blunted with the potassium channel antagonist tetraethylammonium chloride (TEA, 10 mM); whereas responses were only moderately impaired with endothelial disruption or inhibition of prostaglandins (indomethacin, 10 μM). In contrast, endothelial disruption as well as exposure to TEA largely abolished vasodilatory responses to ACh in c. tibial arteries while no effect of prostaglandin inhibition was observed. For both vascular beds, responses to ACh were moderately dependent on the NO signaling pathway. Inhibition of NO synthase had no impact, despite complete reversal of phenylephrine-mediated tone with SNP, whereas inhibition of soluble guanylate cyclase (sGC) caused minor impairments. Endothelium-independent vasodilation also relied on potassium channels. In summary, ACh-mediated vasodilation of mesenteric and c. tibial arteries occurs through the activation of potassium channels to induce hyperpolarization with moderate reliance on sGC. Prostaglandins likewise play a small role in the vasodilatory response to ACh in mesenteric arteries.
doi_str_mv 10.1007/s00360-013-0757-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1492608863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1492608863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-8642e1e4e331b225d9177fca2f3413b1df3c57309d7c40f3a8c6dd26e95705963</originalsourceid><addsrcrecordid>eNqNkU9rFTEUxYMo9ln9AG4k4KYuYm8mmWRmKaX-gRY3FcRNyEvutCmTpCbzCu_bm-FVEUHo6kLu75zLySHkNYf3HECfVgChgAEXDHSvGTwhGy5Fx7hQ35-SDXAtGe_1cERe1HoLAJIP8jk56oSSwCVsSLxEd2NTqLHSPFHrcNnP7ibPISGL6INd0NN7W7MPs11CTjQkWvd1wRgctWXBErDSqeRIY96VFNI19fm-vZ38wGSDtzRaV9rKvntJnk12rvjqYR6Tbx_Pr84-s4uvn76cfbhgTkK_sEHJDjlKFIJvu673I9d6crabhORiy_0kXK8FjF43wSTs4JT3ncKx19CPShyTk4PvXck_d1gXE0N1OM82Yd5Vw-XYKRgGJR6BCqllL8cVffsPersGbkFWSozNb-SN4geqZa614GTuSoi27A0Hs9ZmDrWZVptZazPQNG8enHfb9ul_FL97akB3AGpbpWssf53-r-svRWuiOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1433988691</pqid></control><display><type>article</type><title>Mechanisms of acetylcholine-mediated vasodilation in systemic arteries from mourning doves (Zenaida macroura)</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Jarrett, Catherine ; Lekic, Mateja ; Smith, Christina L. ; Pusec, Carolina M. ; Sweazea, Karen L.</creator><creatorcontrib>Jarrett, Catherine ; Lekic, Mateja ; Smith, Christina L. ; Pusec, Carolina M. ; Sweazea, Karen L.</creatorcontrib><description>For mammals, acetylcholine (ACh) promotes endothelium-dependent vasodilation primarily through nitric oxide (NO) and prostaglandin-mediated pathways, with varying reliance on endothelial-derived hyperpolarizing factors. Currently, no studies have been conducted on small systemic arteries from wild birds. We hypothesized that ACh-mediated vasodilation of isolated small arteries from mourning doves ( Zenaida macroura ) would likewise depend on endothelial-derived factors. Small resistance mesenteric and cranial tibial (c. tibial) arteries (80–150 μm, inner diameter) were cannulated and pre-constricted to 50 % of resting inner diameter with phenylephrine then exposed to increasing concentrations of ACh (10 −9 –10 −5  M) or the NO donor, sodium nitroprusside (SNP; 10 −12 –10 −3  M). For mesenteric arteries, ACh-mediated vasodilation was significantly blunted with the potassium channel antagonist tetraethylammonium chloride (TEA, 10 mM); whereas responses were only moderately impaired with endothelial disruption or inhibition of prostaglandins (indomethacin, 10 μM). In contrast, endothelial disruption as well as exposure to TEA largely abolished vasodilatory responses to ACh in c. tibial arteries while no effect of prostaglandin inhibition was observed. For both vascular beds, responses to ACh were moderately dependent on the NO signaling pathway. Inhibition of NO synthase had no impact, despite complete reversal of phenylephrine-mediated tone with SNP, whereas inhibition of soluble guanylate cyclase (sGC) caused minor impairments. Endothelium-independent vasodilation also relied on potassium channels. In summary, ACh-mediated vasodilation of mesenteric and c. tibial arteries occurs through the activation of potassium channels to induce hyperpolarization with moderate reliance on sGC. Prostaglandins likewise play a small role in the vasodilatory response to ACh in mesenteric arteries.</description><identifier>ISSN: 0174-1578</identifier><identifier>EISSN: 1432-136X</identifier><identifier>DOI: 10.1007/s00360-013-0757-0</identifier><identifier>PMID: 23640140</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetylcholine - physiology ; Animal Physiology ; Animals ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Birds ; Blood pressure ; Blood vessels ; Columbidae - physiology ; Cyclooxygenase Inhibitors - pharmacology ; Endothelium ; Guanylate Cyclase - physiology ; Human Physiology ; Indomethacin - pharmacology ; Life Sciences ; Male ; Mesenteric Arteries - physiology ; Musculoskeletal system ; Nitric oxide ; Nitric Oxide Donors - pharmacology ; Nitroprusside - pharmacology ; Original Paper ; Potassium ; Potassium Channel Blockers - pharmacology ; Potassium Channels - physiology ; Poultry ; Pulmonary arteries ; Receptors, Cytoplasmic and Nuclear - physiology ; Soluble Guanylyl Cyclase ; Tetraethylammonium - pharmacology ; Tibial Arteries - physiology ; Vasodilation - physiology ; Veins &amp; arteries ; Zenaida macroura ; Zoology</subject><ispartof>Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology, 2013-10, Vol.183 (7), p.959-967</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-8642e1e4e331b225d9177fca2f3413b1df3c57309d7c40f3a8c6dd26e95705963</citedby><cites>FETCH-LOGICAL-c405t-8642e1e4e331b225d9177fca2f3413b1df3c57309d7c40f3a8c6dd26e95705963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00360-013-0757-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00360-013-0757-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23640140$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jarrett, Catherine</creatorcontrib><creatorcontrib>Lekic, Mateja</creatorcontrib><creatorcontrib>Smith, Christina L.</creatorcontrib><creatorcontrib>Pusec, Carolina M.</creatorcontrib><creatorcontrib>Sweazea, Karen L.</creatorcontrib><title>Mechanisms of acetylcholine-mediated vasodilation in systemic arteries from mourning doves (Zenaida macroura)</title><title>Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology</title><addtitle>J Comp Physiol B</addtitle><addtitle>J Comp Physiol B</addtitle><description>For mammals, acetylcholine (ACh) promotes endothelium-dependent vasodilation primarily through nitric oxide (NO) and prostaglandin-mediated pathways, with varying reliance on endothelial-derived hyperpolarizing factors. Currently, no studies have been conducted on small systemic arteries from wild birds. We hypothesized that ACh-mediated vasodilation of isolated small arteries from mourning doves ( Zenaida macroura ) would likewise depend on endothelial-derived factors. Small resistance mesenteric and cranial tibial (c. tibial) arteries (80–150 μm, inner diameter) were cannulated and pre-constricted to 50 % of resting inner diameter with phenylephrine then exposed to increasing concentrations of ACh (10 −9 –10 −5  M) or the NO donor, sodium nitroprusside (SNP; 10 −12 –10 −3  M). For mesenteric arteries, ACh-mediated vasodilation was significantly blunted with the potassium channel antagonist tetraethylammonium chloride (TEA, 10 mM); whereas responses were only moderately impaired with endothelial disruption or inhibition of prostaglandins (indomethacin, 10 μM). In contrast, endothelial disruption as well as exposure to TEA largely abolished vasodilatory responses to ACh in c. tibial arteries while no effect of prostaglandin inhibition was observed. For both vascular beds, responses to ACh were moderately dependent on the NO signaling pathway. Inhibition of NO synthase had no impact, despite complete reversal of phenylephrine-mediated tone with SNP, whereas inhibition of soluble guanylate cyclase (sGC) caused minor impairments. Endothelium-independent vasodilation also relied on potassium channels. In summary, ACh-mediated vasodilation of mesenteric and c. tibial arteries occurs through the activation of potassium channels to induce hyperpolarization with moderate reliance on sGC. Prostaglandins likewise play a small role in the vasodilatory response to ACh in mesenteric arteries.</description><subject>Acetylcholine - physiology</subject><subject>Animal Physiology</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Birds</subject><subject>Blood pressure</subject><subject>Blood vessels</subject><subject>Columbidae - physiology</subject><subject>Cyclooxygenase Inhibitors - pharmacology</subject><subject>Endothelium</subject><subject>Guanylate Cyclase - physiology</subject><subject>Human Physiology</subject><subject>Indomethacin - pharmacology</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Mesenteric Arteries - physiology</subject><subject>Musculoskeletal system</subject><subject>Nitric oxide</subject><subject>Nitric Oxide Donors - pharmacology</subject><subject>Nitroprusside - pharmacology</subject><subject>Original Paper</subject><subject>Potassium</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>Potassium Channels - physiology</subject><subject>Poultry</subject><subject>Pulmonary arteries</subject><subject>Receptors, Cytoplasmic and Nuclear - physiology</subject><subject>Soluble Guanylyl Cyclase</subject><subject>Tetraethylammonium - pharmacology</subject><subject>Tibial Arteries - physiology</subject><subject>Vasodilation - physiology</subject><subject>Veins &amp; arteries</subject><subject>Zenaida macroura</subject><subject>Zoology</subject><issn>0174-1578</issn><issn>1432-136X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkU9rFTEUxYMo9ln9AG4k4KYuYm8mmWRmKaX-gRY3FcRNyEvutCmTpCbzCu_bm-FVEUHo6kLu75zLySHkNYf3HECfVgChgAEXDHSvGTwhGy5Fx7hQ35-SDXAtGe_1cERe1HoLAJIP8jk56oSSwCVsSLxEd2NTqLHSPFHrcNnP7ibPISGL6INd0NN7W7MPs11CTjQkWvd1wRgctWXBErDSqeRIY96VFNI19fm-vZ38wGSDtzRaV9rKvntJnk12rvjqYR6Tbx_Pr84-s4uvn76cfbhgTkK_sEHJDjlKFIJvu673I9d6crabhORiy_0kXK8FjF43wSTs4JT3ncKx19CPShyTk4PvXck_d1gXE0N1OM82Yd5Vw-XYKRgGJR6BCqllL8cVffsPersGbkFWSozNb-SN4geqZa614GTuSoi27A0Hs9ZmDrWZVptZazPQNG8enHfb9ul_FL97akB3AGpbpWssf53-r-svRWuiOg</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Jarrett, Catherine</creator><creator>Lekic, Mateja</creator><creator>Smith, Christina L.</creator><creator>Pusec, Carolina M.</creator><creator>Sweazea, Karen L.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7X8</scope></search><sort><creationdate>20131001</creationdate><title>Mechanisms of acetylcholine-mediated vasodilation in systemic arteries from mourning doves (Zenaida macroura)</title><author>Jarrett, Catherine ; Lekic, Mateja ; Smith, Christina L. ; Pusec, Carolina M. ; Sweazea, Karen L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-8642e1e4e331b225d9177fca2f3413b1df3c57309d7c40f3a8c6dd26e95705963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acetylcholine - physiology</topic><topic>Animal Physiology</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Birds</topic><topic>Blood pressure</topic><topic>Blood vessels</topic><topic>Columbidae - physiology</topic><topic>Cyclooxygenase Inhibitors - pharmacology</topic><topic>Endothelium</topic><topic>Guanylate Cyclase - physiology</topic><topic>Human Physiology</topic><topic>Indomethacin - pharmacology</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Mesenteric Arteries - physiology</topic><topic>Musculoskeletal system</topic><topic>Nitric oxide</topic><topic>Nitric Oxide Donors - pharmacology</topic><topic>Nitroprusside - pharmacology</topic><topic>Original Paper</topic><topic>Potassium</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>Potassium Channels - physiology</topic><topic>Poultry</topic><topic>Pulmonary arteries</topic><topic>Receptors, Cytoplasmic and Nuclear - physiology</topic><topic>Soluble Guanylyl Cyclase</topic><topic>Tetraethylammonium - pharmacology</topic><topic>Tibial Arteries - physiology</topic><topic>Vasodilation - physiology</topic><topic>Veins &amp; arteries</topic><topic>Zenaida macroura</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jarrett, Catherine</creatorcontrib><creatorcontrib>Lekic, Mateja</creatorcontrib><creatorcontrib>Smith, Christina L.</creatorcontrib><creatorcontrib>Pusec, Carolina M.</creatorcontrib><creatorcontrib>Sweazea, Karen L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jarrett, Catherine</au><au>Lekic, Mateja</au><au>Smith, Christina L.</au><au>Pusec, Carolina M.</au><au>Sweazea, Karen L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of acetylcholine-mediated vasodilation in systemic arteries from mourning doves (Zenaida macroura)</atitle><jtitle>Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology</jtitle><stitle>J Comp Physiol B</stitle><addtitle>J Comp Physiol B</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>183</volume><issue>7</issue><spage>959</spage><epage>967</epage><pages>959-967</pages><issn>0174-1578</issn><eissn>1432-136X</eissn><abstract>For mammals, acetylcholine (ACh) promotes endothelium-dependent vasodilation primarily through nitric oxide (NO) and prostaglandin-mediated pathways, with varying reliance on endothelial-derived hyperpolarizing factors. Currently, no studies have been conducted on small systemic arteries from wild birds. We hypothesized that ACh-mediated vasodilation of isolated small arteries from mourning doves ( Zenaida macroura ) would likewise depend on endothelial-derived factors. Small resistance mesenteric and cranial tibial (c. tibial) arteries (80–150 μm, inner diameter) were cannulated and pre-constricted to 50 % of resting inner diameter with phenylephrine then exposed to increasing concentrations of ACh (10 −9 –10 −5  M) or the NO donor, sodium nitroprusside (SNP; 10 −12 –10 −3  M). For mesenteric arteries, ACh-mediated vasodilation was significantly blunted with the potassium channel antagonist tetraethylammonium chloride (TEA, 10 mM); whereas responses were only moderately impaired with endothelial disruption or inhibition of prostaglandins (indomethacin, 10 μM). In contrast, endothelial disruption as well as exposure to TEA largely abolished vasodilatory responses to ACh in c. tibial arteries while no effect of prostaglandin inhibition was observed. For both vascular beds, responses to ACh were moderately dependent on the NO signaling pathway. Inhibition of NO synthase had no impact, despite complete reversal of phenylephrine-mediated tone with SNP, whereas inhibition of soluble guanylate cyclase (sGC) caused minor impairments. Endothelium-independent vasodilation also relied on potassium channels. In summary, ACh-mediated vasodilation of mesenteric and c. tibial arteries occurs through the activation of potassium channels to induce hyperpolarization with moderate reliance on sGC. Prostaglandins likewise play a small role in the vasodilatory response to ACh in mesenteric arteries.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>23640140</pmid><doi>10.1007/s00360-013-0757-0</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0174-1578
ispartof Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology, 2013-10, Vol.183 (7), p.959-967
issn 0174-1578
1432-136X
language eng
recordid cdi_proquest_miscellaneous_1492608863
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Acetylcholine - physiology
Animal Physiology
Animals
Biochemistry
Biomedical and Life Sciences
Biomedicine
Birds
Blood pressure
Blood vessels
Columbidae - physiology
Cyclooxygenase Inhibitors - pharmacology
Endothelium
Guanylate Cyclase - physiology
Human Physiology
Indomethacin - pharmacology
Life Sciences
Male
Mesenteric Arteries - physiology
Musculoskeletal system
Nitric oxide
Nitric Oxide Donors - pharmacology
Nitroprusside - pharmacology
Original Paper
Potassium
Potassium Channel Blockers - pharmacology
Potassium Channels - physiology
Poultry
Pulmonary arteries
Receptors, Cytoplasmic and Nuclear - physiology
Soluble Guanylyl Cyclase
Tetraethylammonium - pharmacology
Tibial Arteries - physiology
Vasodilation - physiology
Veins & arteries
Zenaida macroura
Zoology
title Mechanisms of acetylcholine-mediated vasodilation in systemic arteries from mourning doves (Zenaida macroura)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20acetylcholine-mediated%20vasodilation%20in%20systemic%20arteries%20from%20mourning%20doves%20(Zenaida%20macroura)&rft.jtitle=Journal%20of%20comparative%20physiology.%20B,%20Biochemical,%20systemic,%20and%20environmental%20physiology&rft.au=Jarrett,%20Catherine&rft.date=2013-10-01&rft.volume=183&rft.issue=7&rft.spage=959&rft.epage=967&rft.pages=959-967&rft.issn=0174-1578&rft.eissn=1432-136X&rft_id=info:doi/10.1007/s00360-013-0757-0&rft_dat=%3Cproquest_cross%3E1492608863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1433988691&rft_id=info:pmid/23640140&rfr_iscdi=true