Application of ensemble-based data assimilation techniques for aquifer characterization using tracer data at Hanford 300 area

Subsurface aquifer characterization often involves high parameter dimensionality and requires tremendous computational resources if employing a full Bayesian approach. Ensemble‐based data assimilation techniques, including filtering and smoothing, are computationally efficient alternatives. Despite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2013-10, Vol.49 (10), p.7064-7076
Hauptverfasser: Chen, Xingyuan, Hammond, Glenn E., Murray, Chris J., Rockhold, Mark L., Vermeul, Vince R., Zachara, John M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7076
container_issue 10
container_start_page 7064
container_title Water resources research
container_volume 49
creator Chen, Xingyuan
Hammond, Glenn E.
Murray, Chris J.
Rockhold, Mark L.
Vermeul, Vince R.
Zachara, John M.
description Subsurface aquifer characterization often involves high parameter dimensionality and requires tremendous computational resources if employing a full Bayesian approach. Ensemble‐based data assimilation techniques, including filtering and smoothing, are computationally efficient alternatives. Despite the increasing use of ensemble‐based methods in assimilating flow and transport related data for subsurface aquifer characterization, most applications have been limited to synthetic studies or two‐dimensional problems. In this study, we applied ensemble‐based techniques adapted for parameter estimation, including the p‐space ensemble Kalman filter and ensemble smoother, for assimilating field tracer experimental data obtained from the Integrated Field Research Challenge (IFRC) site at the Hanford 300 Area. The forward problem was simulated using the massively parallel three‐dimensional flow and transport code PFLOTRAN to effectively deal with the highly transient flow boundary conditions at the site and to meet the computational demands of ensemble‐based methods. This study demonstrates the effectiveness of ensemble‐based methods for characterizing a heterogeneous aquifer by assimilating experimental tracer data, with refined prior information obtained from assimilating other types of data available at the site. It is demonstrated that high‐performance computing enables the use of increasingly mechanistic nonlinear forward simulations for a complex system within the data assimilation framework with reasonable turnaround time. Key Points p‐space EnKF was effective for characterizing a heterogeneous aquifer. Iterative approaches are necessary to reduce the nonlinearity of a problem. HPC is necessary for ensemble‐based data assimilation in complex systems .
doi_str_mv 10.1002/2012WR013285
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1492604412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3545623511</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4451-fbec6b2080280014a1de6616b04eb180e644d0eb3d6cc59c21598528bac2466c3</originalsourceid><addsrcrecordid>eNpdkVFr1EAQxxdR8Kx96wdY8MWX6MzuZpM8lrO9KqXCVenjMtlM7La55LqboBX87uZIkeLTwMzvN_zhL8QJwgcEUB8VoLrZAmpV5i_ECitjsqIq9EuxAjA6Q10Vr8WblO4A0OS2WIk_p_t9FzyNYejl0EruE-_qjrOaEjeyoZEkpRR2oVuYkf1tHx4mTrIdoqSHKbQcpb-lSH7kGH4v3JRC_0OO83K-Lm9GeUH9LDVSA0iKTG_Fq5a6xMdP80h8Pz_7tr7ILr9uPq9PLzMyJsesrdnbWkEJqjwkJ2zYWrQ1GK6xBLbGNMC1bqz3eeUV5lWZq7Imr4y1Xh-J98vffRwO0Ue3C8lz11HPw5QcmkpZMAbVjL77D70bptjP6Rxao6BAsAdKL9TP0PGj28ewo_joENyhCPe8CHezXW8V5BZnK1uskEb-9c-ieO9soYsZvdo4df2lhKtPW3et_wIvcYw9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642071062</pqid></control><display><type>article</type><title>Application of ensemble-based data assimilation techniques for aquifer characterization using tracer data at Hanford 300 area</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chen, Xingyuan ; Hammond, Glenn E. ; Murray, Chris J. ; Rockhold, Mark L. ; Vermeul, Vince R. ; Zachara, John M.</creator><creatorcontrib>Chen, Xingyuan ; Hammond, Glenn E. ; Murray, Chris J. ; Rockhold, Mark L. ; Vermeul, Vince R. ; Zachara, John M.</creatorcontrib><description>Subsurface aquifer characterization often involves high parameter dimensionality and requires tremendous computational resources if employing a full Bayesian approach. Ensemble‐based data assimilation techniques, including filtering and smoothing, are computationally efficient alternatives. Despite the increasing use of ensemble‐based methods in assimilating flow and transport related data for subsurface aquifer characterization, most applications have been limited to synthetic studies or two‐dimensional problems. In this study, we applied ensemble‐based techniques adapted for parameter estimation, including the p‐space ensemble Kalman filter and ensemble smoother, for assimilating field tracer experimental data obtained from the Integrated Field Research Challenge (IFRC) site at the Hanford 300 Area. The forward problem was simulated using the massively parallel three‐dimensional flow and transport code PFLOTRAN to effectively deal with the highly transient flow boundary conditions at the site and to meet the computational demands of ensemble‐based methods. This study demonstrates the effectiveness of ensemble‐based methods for characterizing a heterogeneous aquifer by assimilating experimental tracer data, with refined prior information obtained from assimilating other types of data available at the site. It is demonstrated that high‐performance computing enables the use of increasingly mechanistic nonlinear forward simulations for a complex system within the data assimilation framework with reasonable turnaround time. Key Points p‐space EnKF was effective for characterizing a heterogeneous aquifer. Iterative approaches are necessary to reduce the nonlinearity of a problem. HPC is necessary for ensemble‐based data assimilation in complex systems .</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/2012WR013285</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Aquifers ; Boundary conditions ; Complex systems ; Data assimilation ; Data collection ; ensemble Kalman filter ; inverse modeling ; Parameter estimation</subject><ispartof>Water resources research, 2013-10, Vol.49 (10), p.7064-7076</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4451-fbec6b2080280014a1de6616b04eb180e644d0eb3d6cc59c21598528bac2466c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2012WR013285$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2012WR013285$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11514,27924,27925,45574,45575,46468,46892</link.rule.ids></links><search><creatorcontrib>Chen, Xingyuan</creatorcontrib><creatorcontrib>Hammond, Glenn E.</creatorcontrib><creatorcontrib>Murray, Chris J.</creatorcontrib><creatorcontrib>Rockhold, Mark L.</creatorcontrib><creatorcontrib>Vermeul, Vince R.</creatorcontrib><creatorcontrib>Zachara, John M.</creatorcontrib><title>Application of ensemble-based data assimilation techniques for aquifer characterization using tracer data at Hanford 300 area</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>Subsurface aquifer characterization often involves high parameter dimensionality and requires tremendous computational resources if employing a full Bayesian approach. Ensemble‐based data assimilation techniques, including filtering and smoothing, are computationally efficient alternatives. Despite the increasing use of ensemble‐based methods in assimilating flow and transport related data for subsurface aquifer characterization, most applications have been limited to synthetic studies or two‐dimensional problems. In this study, we applied ensemble‐based techniques adapted for parameter estimation, including the p‐space ensemble Kalman filter and ensemble smoother, for assimilating field tracer experimental data obtained from the Integrated Field Research Challenge (IFRC) site at the Hanford 300 Area. The forward problem was simulated using the massively parallel three‐dimensional flow and transport code PFLOTRAN to effectively deal with the highly transient flow boundary conditions at the site and to meet the computational demands of ensemble‐based methods. This study demonstrates the effectiveness of ensemble‐based methods for characterizing a heterogeneous aquifer by assimilating experimental tracer data, with refined prior information obtained from assimilating other types of data available at the site. It is demonstrated that high‐performance computing enables the use of increasingly mechanistic nonlinear forward simulations for a complex system within the data assimilation framework with reasonable turnaround time. Key Points p‐space EnKF was effective for characterizing a heterogeneous aquifer. Iterative approaches are necessary to reduce the nonlinearity of a problem. HPC is necessary for ensemble‐based data assimilation in complex systems .</description><subject>Aquifers</subject><subject>Boundary conditions</subject><subject>Complex systems</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>ensemble Kalman filter</subject><subject>inverse modeling</subject><subject>Parameter estimation</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkVFr1EAQxxdR8Kx96wdY8MWX6MzuZpM8lrO9KqXCVenjMtlM7La55LqboBX87uZIkeLTwMzvN_zhL8QJwgcEUB8VoLrZAmpV5i_ECitjsqIq9EuxAjA6Q10Vr8WblO4A0OS2WIk_p_t9FzyNYejl0EruE-_qjrOaEjeyoZEkpRR2oVuYkf1tHx4mTrIdoqSHKbQcpb-lSH7kGH4v3JRC_0OO83K-Lm9GeUH9LDVSA0iKTG_Fq5a6xMdP80h8Pz_7tr7ILr9uPq9PLzMyJsesrdnbWkEJqjwkJ2zYWrQ1GK6xBLbGNMC1bqz3eeUV5lWZq7Imr4y1Xh-J98vffRwO0Ue3C8lz11HPw5QcmkpZMAbVjL77D70bptjP6Rxao6BAsAdKL9TP0PGj28ewo_joENyhCPe8CHezXW8V5BZnK1uskEb-9c-ieO9soYsZvdo4df2lhKtPW3et_wIvcYw9</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Chen, Xingyuan</creator><creator>Hammond, Glenn E.</creator><creator>Murray, Chris J.</creator><creator>Rockhold, Mark L.</creator><creator>Vermeul, Vince R.</creator><creator>Zachara, John M.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201310</creationdate><title>Application of ensemble-based data assimilation techniques for aquifer characterization using tracer data at Hanford 300 area</title><author>Chen, Xingyuan ; Hammond, Glenn E. ; Murray, Chris J. ; Rockhold, Mark L. ; Vermeul, Vince R. ; Zachara, John M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4451-fbec6b2080280014a1de6616b04eb180e644d0eb3d6cc59c21598528bac2466c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aquifers</topic><topic>Boundary conditions</topic><topic>Complex systems</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>ensemble Kalman filter</topic><topic>inverse modeling</topic><topic>Parameter estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xingyuan</creatorcontrib><creatorcontrib>Hammond, Glenn E.</creatorcontrib><creatorcontrib>Murray, Chris J.</creatorcontrib><creatorcontrib>Rockhold, Mark L.</creatorcontrib><creatorcontrib>Vermeul, Vince R.</creatorcontrib><creatorcontrib>Zachara, John M.</creatorcontrib><collection>Istex</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xingyuan</au><au>Hammond, Glenn E.</au><au>Murray, Chris J.</au><au>Rockhold, Mark L.</au><au>Vermeul, Vince R.</au><au>Zachara, John M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of ensemble-based data assimilation techniques for aquifer characterization using tracer data at Hanford 300 area</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2013-10</date><risdate>2013</risdate><volume>49</volume><issue>10</issue><spage>7064</spage><epage>7076</epage><pages>7064-7076</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Subsurface aquifer characterization often involves high parameter dimensionality and requires tremendous computational resources if employing a full Bayesian approach. Ensemble‐based data assimilation techniques, including filtering and smoothing, are computationally efficient alternatives. Despite the increasing use of ensemble‐based methods in assimilating flow and transport related data for subsurface aquifer characterization, most applications have been limited to synthetic studies or two‐dimensional problems. In this study, we applied ensemble‐based techniques adapted for parameter estimation, including the p‐space ensemble Kalman filter and ensemble smoother, for assimilating field tracer experimental data obtained from the Integrated Field Research Challenge (IFRC) site at the Hanford 300 Area. The forward problem was simulated using the massively parallel three‐dimensional flow and transport code PFLOTRAN to effectively deal with the highly transient flow boundary conditions at the site and to meet the computational demands of ensemble‐based methods. This study demonstrates the effectiveness of ensemble‐based methods for characterizing a heterogeneous aquifer by assimilating experimental tracer data, with refined prior information obtained from assimilating other types of data available at the site. It is demonstrated that high‐performance computing enables the use of increasingly mechanistic nonlinear forward simulations for a complex system within the data assimilation framework with reasonable turnaround time. Key Points p‐space EnKF was effective for characterizing a heterogeneous aquifer. Iterative approaches are necessary to reduce the nonlinearity of a problem. HPC is necessary for ensemble‐based data assimilation in complex systems .</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2012WR013285</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2013-10, Vol.49 (10), p.7064-7076
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_1492604412
source Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals
subjects Aquifers
Boundary conditions
Complex systems
Data assimilation
Data collection
ensemble Kalman filter
inverse modeling
Parameter estimation
title Application of ensemble-based data assimilation techniques for aquifer characterization using tracer data at Hanford 300 area
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20ensemble-based%20data%20assimilation%20techniques%20for%20aquifer%20characterization%20using%20tracer%20data%20at%20Hanford%20300%20area&rft.jtitle=Water%20resources%20research&rft.au=Chen,%20Xingyuan&rft.date=2013-10&rft.volume=49&rft.issue=10&rft.spage=7064&rft.epage=7076&rft.pages=7064-7076&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/2012WR013285&rft_dat=%3Cproquest_wiley%3E3545623511%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642071062&rft_id=info:pmid/&rfr_iscdi=true