Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport

The coupled imperatives for reduced heat dissipation and power consumption in high-density electronics have rekindled interest in devices based on tunnelling. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, layer uniformity, interface stability and electronic state...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2014-01, Vol.5 (1), p.3161-3161, Article 3161
Hauptverfasser: Friedman, Adam L., van ‘t Erve, Olaf M. J., Li, Connie H., Robinson, Jeremy T., Jonker, Berend T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3161
container_issue 1
container_start_page 3161
container_title Nature communications
container_volume 5
creator Friedman, Adam L.
van ‘t Erve, Olaf M. J.
Li, Connie H.
Robinson, Jeremy T.
Jonker, Berend T.
description The coupled imperatives for reduced heat dissipation and power consumption in high-density electronics have rekindled interest in devices based on tunnelling. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, layer uniformity, interface stability and electronic states that severely complicate fabrication and compromise performance. Two-dimensional materials such as graphene obviate these issues and offer a new paradigm for tunnel barriers. Here we demonstrate a homoepitaxial tunnel barrier structure in which graphene serves as both the tunnel barrier and the high-mobility transport channel. We fluorinate the top layer of a graphene bilayer to decouple it from the bottom layer, so that it serves as a single-monolayer tunnel barrier for both charge and spin injection into the lower graphene channel. We demonstrate high spin injection efficiency with a tunnelling spin polarization >60%, lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the Hanle effect. The long spin diffusion lengths in graphene make it attractive for spintronic applications but achieving efficient spin injection is proving challenging. Here, the authors show that functionalized graphene can act as a tunnel barrier, demonstrating non-local homoepitaxial spin valves.
doi_str_mv 10.1038/ncomms4161
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1491061555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3186543611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-3de6db05856e4301328a427ab5eccdfcbef1112c6838a148e0cb90f06cba273b3</originalsourceid><addsrcrecordid>eNpl0E9LwzAYBvAgihtzFz-ABLyIUk2apE2PMtQJAy96Lmn6dstok5q0-OfTW92mornkhfx4wvsgdEzJJSVMXlntmiZwmtA9NI4JpxFNY7b_ax6haQhrMhyWUcn5IRrFnHPBeDZG5dw1DlrTqVejatz11kKNC-W9AR_wi-lWuOqt7oyzqjbvUOKlV-0KLETORrsZV85jvVJ-CVjZEofWWNx5ZUPrfHeEDipVB5hu7wl6ur15nM2jxcPd_ex6EWkm0y5iJSRlQYQUCXBGKIul4nGqCgFal5UuoKKUxjqRTCrKJRBdZKQiiS5UnLKCTdDZJrf17rmH0OWNCRrqWllwfcgpzyhJqBBioKd_6Nr1fljxS5EkFSLmgzrfKO1dCB6qvPWmUf4tpyT_rD__qX_AJ9vIvmig_Ka7sgdwsQFheLJL8L_-_B_3AcsqkTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490675524</pqid></control><display><type>article</type><title>Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport</title><source>Springer Nature OA Free Journals</source><creator>Friedman, Adam L. ; van ‘t Erve, Olaf M. J. ; Li, Connie H. ; Robinson, Jeremy T. ; Jonker, Berend T.</creator><creatorcontrib>Friedman, Adam L. ; van ‘t Erve, Olaf M. J. ; Li, Connie H. ; Robinson, Jeremy T. ; Jonker, Berend T.</creatorcontrib><description>The coupled imperatives for reduced heat dissipation and power consumption in high-density electronics have rekindled interest in devices based on tunnelling. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, layer uniformity, interface stability and electronic states that severely complicate fabrication and compromise performance. Two-dimensional materials such as graphene obviate these issues and offer a new paradigm for tunnel barriers. Here we demonstrate a homoepitaxial tunnel barrier structure in which graphene serves as both the tunnel barrier and the high-mobility transport channel. We fluorinate the top layer of a graphene bilayer to decouple it from the bottom layer, so that it serves as a single-monolayer tunnel barrier for both charge and spin injection into the lower graphene channel. We demonstrate high spin injection efficiency with a tunnelling spin polarization &gt;60%, lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the Hanle effect. The long spin diffusion lengths in graphene make it attractive for spintronic applications but achieving efficient spin injection is proving challenging. Here, the authors show that functionalized graphene can act as a tunnel barrier, demonstrating non-local homoepitaxial spin valves.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms4161</identifier><identifier>PMID: 24445349</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1007 ; 639/766/25 ; 639/925/918 ; Carbon ; Electrons ; Graphene ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2014-01, Vol.5 (1), p.3161-3161, Article 3161</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Jan 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-3de6db05856e4301328a427ab5eccdfcbef1112c6838a148e0cb90f06cba273b3</citedby><cites>FETCH-LOGICAL-c387t-3de6db05856e4301328a427ab5eccdfcbef1112c6838a148e0cb90f06cba273b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms4161$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms4161$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41096,42165,51551</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms4161$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24445349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Friedman, Adam L.</creatorcontrib><creatorcontrib>van ‘t Erve, Olaf M. J.</creatorcontrib><creatorcontrib>Li, Connie H.</creatorcontrib><creatorcontrib>Robinson, Jeremy T.</creatorcontrib><creatorcontrib>Jonker, Berend T.</creatorcontrib><title>Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The coupled imperatives for reduced heat dissipation and power consumption in high-density electronics have rekindled interest in devices based on tunnelling. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, layer uniformity, interface stability and electronic states that severely complicate fabrication and compromise performance. Two-dimensional materials such as graphene obviate these issues and offer a new paradigm for tunnel barriers. Here we demonstrate a homoepitaxial tunnel barrier structure in which graphene serves as both the tunnel barrier and the high-mobility transport channel. We fluorinate the top layer of a graphene bilayer to decouple it from the bottom layer, so that it serves as a single-monolayer tunnel barrier for both charge and spin injection into the lower graphene channel. We demonstrate high spin injection efficiency with a tunnelling spin polarization &gt;60%, lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the Hanle effect. The long spin diffusion lengths in graphene make it attractive for spintronic applications but achieving efficient spin injection is proving challenging. Here, the authors show that functionalized graphene can act as a tunnel barrier, demonstrating non-local homoepitaxial spin valves.</description><subject>639/301/1005/1007</subject><subject>639/766/25</subject><subject>639/925/918</subject><subject>Carbon</subject><subject>Electrons</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0E9LwzAYBvAgihtzFz-ABLyIUk2apE2PMtQJAy96Lmn6dstok5q0-OfTW92mornkhfx4wvsgdEzJJSVMXlntmiZwmtA9NI4JpxFNY7b_ax6haQhrMhyWUcn5IRrFnHPBeDZG5dw1DlrTqVejatz11kKNC-W9AR_wi-lWuOqt7oyzqjbvUOKlV-0KLETORrsZV85jvVJ-CVjZEofWWNx5ZUPrfHeEDipVB5hu7wl6ur15nM2jxcPd_ex6EWkm0y5iJSRlQYQUCXBGKIul4nGqCgFal5UuoKKUxjqRTCrKJRBdZKQiiS5UnLKCTdDZJrf17rmH0OWNCRrqWllwfcgpzyhJqBBioKd_6Nr1fljxS5EkFSLmgzrfKO1dCB6qvPWmUf4tpyT_rD__qX_AJ9vIvmig_Ka7sgdwsQFheLJL8L_-_B_3AcsqkTI</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Friedman, Adam L.</creator><creator>van ‘t Erve, Olaf M. J.</creator><creator>Li, Connie H.</creator><creator>Robinson, Jeremy T.</creator><creator>Jonker, Berend T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20140101</creationdate><title>Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport</title><author>Friedman, Adam L. ; van ‘t Erve, Olaf M. J. ; Li, Connie H. ; Robinson, Jeremy T. ; Jonker, Berend T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-3de6db05856e4301328a427ab5eccdfcbef1112c6838a148e0cb90f06cba273b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/1005/1007</topic><topic>639/766/25</topic><topic>639/925/918</topic><topic>Carbon</topic><topic>Electrons</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friedman, Adam L.</creatorcontrib><creatorcontrib>van ‘t Erve, Olaf M. J.</creatorcontrib><creatorcontrib>Li, Connie H.</creatorcontrib><creatorcontrib>Robinson, Jeremy T.</creatorcontrib><creatorcontrib>Jonker, Berend T.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Friedman, Adam L.</au><au>van ‘t Erve, Olaf M. J.</au><au>Li, Connie H.</au><au>Robinson, Jeremy T.</au><au>Jonker, Berend T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>3161</spage><epage>3161</epage><pages>3161-3161</pages><artnum>3161</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The coupled imperatives for reduced heat dissipation and power consumption in high-density electronics have rekindled interest in devices based on tunnelling. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, layer uniformity, interface stability and electronic states that severely complicate fabrication and compromise performance. Two-dimensional materials such as graphene obviate these issues and offer a new paradigm for tunnel barriers. Here we demonstrate a homoepitaxial tunnel barrier structure in which graphene serves as both the tunnel barrier and the high-mobility transport channel. We fluorinate the top layer of a graphene bilayer to decouple it from the bottom layer, so that it serves as a single-monolayer tunnel barrier for both charge and spin injection into the lower graphene channel. We demonstrate high spin injection efficiency with a tunnelling spin polarization &gt;60%, lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the Hanle effect. The long spin diffusion lengths in graphene make it attractive for spintronic applications but achieving efficient spin injection is proving challenging. Here, the authors show that functionalized graphene can act as a tunnel barrier, demonstrating non-local homoepitaxial spin valves.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24445349</pmid><doi>10.1038/ncomms4161</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-1723
ispartof Nature communications, 2014-01, Vol.5 (1), p.3161-3161, Article 3161
issn 2041-1723
2041-1723
language eng
recordid cdi_proquest_miscellaneous_1491061555
source Springer Nature OA Free Journals
subjects 639/301/1005/1007
639/766/25
639/925/918
Carbon
Electrons
Graphene
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
title Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A47%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homoepitaxial%20tunnel%20barriers%20with%20functionalized%20graphene-on-graphene%20for%20charge%20and%20spin%20transport&rft.jtitle=Nature%20communications&rft.au=Friedman,%20Adam%20L.&rft.date=2014-01-01&rft.volume=5&rft.issue=1&rft.spage=3161&rft.epage=3161&rft.pages=3161-3161&rft.artnum=3161&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms4161&rft_dat=%3Cproquest_C6C%3E3186543611%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490675524&rft_id=info:pmid/24445349&rfr_iscdi=true