Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds

Scaffolds for tissue engineering (TE) require the consideration of multiple aspects, including polymeric composition and the structure and mechanical properties of the scaffolds, in order to mimic the native extracellular matrix of the tissue. Electrospun fibers are frequently utilized in TE due to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2014-02, Vol.10 (2), p.709-721
Hauptverfasser: Vatankhah, Elham, Semnani, Dariush, Prabhakaran, Molamma P., Tadayon, Mahdi, Razavi, Shahnaz, Ramakrishna, Seeram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 721
container_issue 2
container_start_page 709
container_title Acta biomaterialia
container_volume 10
creator Vatankhah, Elham
Semnani, Dariush
Prabhakaran, Molamma P.
Tadayon, Mahdi
Razavi, Shahnaz
Ramakrishna, Seeram
description Scaffolds for tissue engineering (TE) require the consideration of multiple aspects, including polymeric composition and the structure and mechanical properties of the scaffolds, in order to mimic the native extracellular matrix of the tissue. Electrospun fibers are frequently utilized in TE due to their tunable physical, chemical, and mechanical properties and porosity. The mechanical properties of electrospun scaffolds made from specific polymers are highly dependent on the processing parameters, which can therefore be tuned for particular applications. Fiber diameter and orientation along with polymeric composition are the major factors that determine the elastic modulus of electrospun nano- and microfibers. Here we have developed a neural network model to investigate the simultaneous effects of composition, fiber diameter and fiber orientation of electrospun polycaprolactone/gelatin mats on the elastic modulus of the scaffolds under ambient and simulated physiological conditions. The model generated might assist bioengineers to fabricate electrospun scaffolds with defined fiber diameters, orientations and constituents, thereby replicating the mechanical properties of the native target tissue.
doi_str_mv 10.1016/j.actbio.2013.09.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1490745097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706113004686</els_id><sourcerecordid>1490745097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-9ee0282286f7bc2ce638db85a447cdf833915ca0f39460adb2ad5cff0fd8864c3</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS1URP_AN6hQjr0ktR0ndi5IVVWgUqVeytlyxuPirTdebIeq3x4vWzj2NKPRezNvfoScM9oxysbLTWegzD52nLK-o1NH2fCOnDAlVSuHUR3VXgreSjqyY3Ka84bSXjGuPpBjLqgclFInJFyl4p0Hb0Kz4Jr-lvIc01PjYmq20WLwy2NTfmKDweTiYT9cw5qb6OoIoaSYd-vS7GJ4AbNLMdRgccHLx2oofmkyGOdisPkjee9MyPjptZ6RH19vHq6_t3f3326vr-5aEFyVdkKkXHGuRidn4IBjr-ysBiOEBOtU309sAENdP4mRGjtzYwdwjjqr1CigPyMXh701zK8Vc9FbnwFDMAvGNWsmJirFQCdZpeIghfpFTuj0LvmtSS-aUb3nrDf6wFnvOWs66cq52j6_XljnLdr_pn9gq-DLQYD1z98ek87gcQG0PlVk2kb_9oU_i1GTtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490745097</pqid></control><display><type>article</type><title>Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Vatankhah, Elham ; Semnani, Dariush ; Prabhakaran, Molamma P. ; Tadayon, Mahdi ; Razavi, Shahnaz ; Ramakrishna, Seeram</creator><creatorcontrib>Vatankhah, Elham ; Semnani, Dariush ; Prabhakaran, Molamma P. ; Tadayon, Mahdi ; Razavi, Shahnaz ; Ramakrishna, Seeram</creatorcontrib><description>Scaffolds for tissue engineering (TE) require the consideration of multiple aspects, including polymeric composition and the structure and mechanical properties of the scaffolds, in order to mimic the native extracellular matrix of the tissue. Electrospun fibers are frequently utilized in TE due to their tunable physical, chemical, and mechanical properties and porosity. The mechanical properties of electrospun scaffolds made from specific polymers are highly dependent on the processing parameters, which can therefore be tuned for particular applications. Fiber diameter and orientation along with polymeric composition are the major factors that determine the elastic modulus of electrospun nano- and microfibers. Here we have developed a neural network model to investigate the simultaneous effects of composition, fiber diameter and fiber orientation of electrospun polycaprolactone/gelatin mats on the elastic modulus of the scaffolds under ambient and simulated physiological conditions. The model generated might assist bioengineers to fabricate electrospun scaffolds with defined fiber diameters, orientations and constituents, thereby replicating the mechanical properties of the native target tissue.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2013.09.015</identifier><identifier>PMID: 24075888</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Algorithms ; Animals ; Artificial neural network model ; Elastic Modulus ; Electrospun scaffold ; Fiber diameter ; Gelatin - chemistry ; Neural Networks (Computer) ; Orientation ; Polyesters - chemistry ; Polymers - chemistry ; Regression Analysis ; Sus scrofa ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Acta biomaterialia, 2014-02, Vol.10 (2), p.709-721</ispartof><rights>2013 Acta Materialia Inc.</rights><rights>Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-9ee0282286f7bc2ce638db85a447cdf833915ca0f39460adb2ad5cff0fd8864c3</citedby><cites>FETCH-LOGICAL-c428t-9ee0282286f7bc2ce638db85a447cdf833915ca0f39460adb2ad5cff0fd8864c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2013.09.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24075888$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vatankhah, Elham</creatorcontrib><creatorcontrib>Semnani, Dariush</creatorcontrib><creatorcontrib>Prabhakaran, Molamma P.</creatorcontrib><creatorcontrib>Tadayon, Mahdi</creatorcontrib><creatorcontrib>Razavi, Shahnaz</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><title>Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Scaffolds for tissue engineering (TE) require the consideration of multiple aspects, including polymeric composition and the structure and mechanical properties of the scaffolds, in order to mimic the native extracellular matrix of the tissue. Electrospun fibers are frequently utilized in TE due to their tunable physical, chemical, and mechanical properties and porosity. The mechanical properties of electrospun scaffolds made from specific polymers are highly dependent on the processing parameters, which can therefore be tuned for particular applications. Fiber diameter and orientation along with polymeric composition are the major factors that determine the elastic modulus of electrospun nano- and microfibers. Here we have developed a neural network model to investigate the simultaneous effects of composition, fiber diameter and fiber orientation of electrospun polycaprolactone/gelatin mats on the elastic modulus of the scaffolds under ambient and simulated physiological conditions. The model generated might assist bioengineers to fabricate electrospun scaffolds with defined fiber diameters, orientations and constituents, thereby replicating the mechanical properties of the native target tissue.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Artificial neural network model</subject><subject>Elastic Modulus</subject><subject>Electrospun scaffold</subject><subject>Fiber diameter</subject><subject>Gelatin - chemistry</subject><subject>Neural Networks (Computer)</subject><subject>Orientation</subject><subject>Polyesters - chemistry</subject><subject>Polymers - chemistry</subject><subject>Regression Analysis</subject><subject>Sus scrofa</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9v1DAQxS1URP_AN6hQjr0ktR0ndi5IVVWgUqVeytlyxuPirTdebIeq3x4vWzj2NKPRezNvfoScM9oxysbLTWegzD52nLK-o1NH2fCOnDAlVSuHUR3VXgreSjqyY3Ka84bSXjGuPpBjLqgclFInJFyl4p0Hb0Kz4Jr-lvIc01PjYmq20WLwy2NTfmKDweTiYT9cw5qb6OoIoaSYd-vS7GJ4AbNLMdRgccHLx2oofmkyGOdisPkjee9MyPjptZ6RH19vHq6_t3f3326vr-5aEFyVdkKkXHGuRidn4IBjr-ysBiOEBOtU309sAENdP4mRGjtzYwdwjjqr1CigPyMXh701zK8Vc9FbnwFDMAvGNWsmJirFQCdZpeIghfpFTuj0LvmtSS-aUb3nrDf6wFnvOWs66cq52j6_XljnLdr_pn9gq-DLQYD1z98ek87gcQG0PlVk2kb_9oU_i1GTtQ</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Vatankhah, Elham</creator><creator>Semnani, Dariush</creator><creator>Prabhakaran, Molamma P.</creator><creator>Tadayon, Mahdi</creator><creator>Razavi, Shahnaz</creator><creator>Ramakrishna, Seeram</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140201</creationdate><title>Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds</title><author>Vatankhah, Elham ; Semnani, Dariush ; Prabhakaran, Molamma P. ; Tadayon, Mahdi ; Razavi, Shahnaz ; Ramakrishna, Seeram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-9ee0282286f7bc2ce638db85a447cdf833915ca0f39460adb2ad5cff0fd8864c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Artificial neural network model</topic><topic>Elastic Modulus</topic><topic>Electrospun scaffold</topic><topic>Fiber diameter</topic><topic>Gelatin - chemistry</topic><topic>Neural Networks (Computer)</topic><topic>Orientation</topic><topic>Polyesters - chemistry</topic><topic>Polymers - chemistry</topic><topic>Regression Analysis</topic><topic>Sus scrofa</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vatankhah, Elham</creatorcontrib><creatorcontrib>Semnani, Dariush</creatorcontrib><creatorcontrib>Prabhakaran, Molamma P.</creatorcontrib><creatorcontrib>Tadayon, Mahdi</creatorcontrib><creatorcontrib>Razavi, Shahnaz</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vatankhah, Elham</au><au>Semnani, Dariush</au><au>Prabhakaran, Molamma P.</au><au>Tadayon, Mahdi</au><au>Razavi, Shahnaz</au><au>Ramakrishna, Seeram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2014-02-01</date><risdate>2014</risdate><volume>10</volume><issue>2</issue><spage>709</spage><epage>721</epage><pages>709-721</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Scaffolds for tissue engineering (TE) require the consideration of multiple aspects, including polymeric composition and the structure and mechanical properties of the scaffolds, in order to mimic the native extracellular matrix of the tissue. Electrospun fibers are frequently utilized in TE due to their tunable physical, chemical, and mechanical properties and porosity. The mechanical properties of electrospun scaffolds made from specific polymers are highly dependent on the processing parameters, which can therefore be tuned for particular applications. Fiber diameter and orientation along with polymeric composition are the major factors that determine the elastic modulus of electrospun nano- and microfibers. Here we have developed a neural network model to investigate the simultaneous effects of composition, fiber diameter and fiber orientation of electrospun polycaprolactone/gelatin mats on the elastic modulus of the scaffolds under ambient and simulated physiological conditions. The model generated might assist bioengineers to fabricate electrospun scaffolds with defined fiber diameters, orientations and constituents, thereby replicating the mechanical properties of the native target tissue.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>24075888</pmid><doi>10.1016/j.actbio.2013.09.015</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2014-02, Vol.10 (2), p.709-721
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_1490745097
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Algorithms
Animals
Artificial neural network model
Elastic Modulus
Electrospun scaffold
Fiber diameter
Gelatin - chemistry
Neural Networks (Computer)
Orientation
Polyesters - chemistry
Polymers - chemistry
Regression Analysis
Sus scrofa
Tissue Engineering - methods
Tissue Scaffolds - chemistry
title Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T16%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20network%20for%20modeling%20the%20elastic%20modulus%20of%20electrospun%20polycaprolactone/gelatin%20scaffolds&rft.jtitle=Acta%20biomaterialia&rft.au=Vatankhah,%20Elham&rft.date=2014-02-01&rft.volume=10&rft.issue=2&rft.spage=709&rft.epage=721&rft.pages=709-721&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2013.09.015&rft_dat=%3Cproquest_cross%3E1490745097%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490745097&rft_id=info:pmid/24075888&rft_els_id=S1742706113004686&rfr_iscdi=true