Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds
Scaffolds for tissue engineering (TE) require the consideration of multiple aspects, including polymeric composition and the structure and mechanical properties of the scaffolds, in order to mimic the native extracellular matrix of the tissue. Electrospun fibers are frequently utilized in TE due to...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2014-02, Vol.10 (2), p.709-721 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 721 |
---|---|
container_issue | 2 |
container_start_page | 709 |
container_title | Acta biomaterialia |
container_volume | 10 |
creator | Vatankhah, Elham Semnani, Dariush Prabhakaran, Molamma P. Tadayon, Mahdi Razavi, Shahnaz Ramakrishna, Seeram |
description | Scaffolds for tissue engineering (TE) require the consideration of multiple aspects, including polymeric composition and the structure and mechanical properties of the scaffolds, in order to mimic the native extracellular matrix of the tissue. Electrospun fibers are frequently utilized in TE due to their tunable physical, chemical, and mechanical properties and porosity. The mechanical properties of electrospun scaffolds made from specific polymers are highly dependent on the processing parameters, which can therefore be tuned for particular applications. Fiber diameter and orientation along with polymeric composition are the major factors that determine the elastic modulus of electrospun nano- and microfibers. Here we have developed a neural network model to investigate the simultaneous effects of composition, fiber diameter and fiber orientation of electrospun polycaprolactone/gelatin mats on the elastic modulus of the scaffolds under ambient and simulated physiological conditions. The model generated might assist bioengineers to fabricate electrospun scaffolds with defined fiber diameters, orientations and constituents, thereby replicating the mechanical properties of the native target tissue. |
doi_str_mv | 10.1016/j.actbio.2013.09.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1490745097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706113004686</els_id><sourcerecordid>1490745097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-9ee0282286f7bc2ce638db85a447cdf833915ca0f39460adb2ad5cff0fd8864c3</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS1URP_AN6hQjr0ktR0ndi5IVVWgUqVeytlyxuPirTdebIeq3x4vWzj2NKPRezNvfoScM9oxysbLTWegzD52nLK-o1NH2fCOnDAlVSuHUR3VXgreSjqyY3Ka84bSXjGuPpBjLqgclFInJFyl4p0Hb0Kz4Jr-lvIc01PjYmq20WLwy2NTfmKDweTiYT9cw5qb6OoIoaSYd-vS7GJ4AbNLMdRgccHLx2oofmkyGOdisPkjee9MyPjptZ6RH19vHq6_t3f3326vr-5aEFyVdkKkXHGuRidn4IBjr-ysBiOEBOtU309sAENdP4mRGjtzYwdwjjqr1CigPyMXh701zK8Vc9FbnwFDMAvGNWsmJirFQCdZpeIghfpFTuj0LvmtSS-aUb3nrDf6wFnvOWs66cq52j6_XljnLdr_pn9gq-DLQYD1z98ek87gcQG0PlVk2kb_9oU_i1GTtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490745097</pqid></control><display><type>article</type><title>Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Vatankhah, Elham ; Semnani, Dariush ; Prabhakaran, Molamma P. ; Tadayon, Mahdi ; Razavi, Shahnaz ; Ramakrishna, Seeram</creator><creatorcontrib>Vatankhah, Elham ; Semnani, Dariush ; Prabhakaran, Molamma P. ; Tadayon, Mahdi ; Razavi, Shahnaz ; Ramakrishna, Seeram</creatorcontrib><description>Scaffolds for tissue engineering (TE) require the consideration of multiple aspects, including polymeric composition and the structure and mechanical properties of the scaffolds, in order to mimic the native extracellular matrix of the tissue. Electrospun fibers are frequently utilized in TE due to their tunable physical, chemical, and mechanical properties and porosity. The mechanical properties of electrospun scaffolds made from specific polymers are highly dependent on the processing parameters, which can therefore be tuned for particular applications. Fiber diameter and orientation along with polymeric composition are the major factors that determine the elastic modulus of electrospun nano- and microfibers. Here we have developed a neural network model to investigate the simultaneous effects of composition, fiber diameter and fiber orientation of electrospun polycaprolactone/gelatin mats on the elastic modulus of the scaffolds under ambient and simulated physiological conditions. The model generated might assist bioengineers to fabricate electrospun scaffolds with defined fiber diameters, orientations and constituents, thereby replicating the mechanical properties of the native target tissue.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2013.09.015</identifier><identifier>PMID: 24075888</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Algorithms ; Animals ; Artificial neural network model ; Elastic Modulus ; Electrospun scaffold ; Fiber diameter ; Gelatin - chemistry ; Neural Networks (Computer) ; Orientation ; Polyesters - chemistry ; Polymers - chemistry ; Regression Analysis ; Sus scrofa ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Acta biomaterialia, 2014-02, Vol.10 (2), p.709-721</ispartof><rights>2013 Acta Materialia Inc.</rights><rights>Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-9ee0282286f7bc2ce638db85a447cdf833915ca0f39460adb2ad5cff0fd8864c3</citedby><cites>FETCH-LOGICAL-c428t-9ee0282286f7bc2ce638db85a447cdf833915ca0f39460adb2ad5cff0fd8864c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2013.09.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24075888$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vatankhah, Elham</creatorcontrib><creatorcontrib>Semnani, Dariush</creatorcontrib><creatorcontrib>Prabhakaran, Molamma P.</creatorcontrib><creatorcontrib>Tadayon, Mahdi</creatorcontrib><creatorcontrib>Razavi, Shahnaz</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><title>Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Scaffolds for tissue engineering (TE) require the consideration of multiple aspects, including polymeric composition and the structure and mechanical properties of the scaffolds, in order to mimic the native extracellular matrix of the tissue. Electrospun fibers are frequently utilized in TE due to their tunable physical, chemical, and mechanical properties and porosity. The mechanical properties of electrospun scaffolds made from specific polymers are highly dependent on the processing parameters, which can therefore be tuned for particular applications. Fiber diameter and orientation along with polymeric composition are the major factors that determine the elastic modulus of electrospun nano- and microfibers. Here we have developed a neural network model to investigate the simultaneous effects of composition, fiber diameter and fiber orientation of electrospun polycaprolactone/gelatin mats on the elastic modulus of the scaffolds under ambient and simulated physiological conditions. The model generated might assist bioengineers to fabricate electrospun scaffolds with defined fiber diameters, orientations and constituents, thereby replicating the mechanical properties of the native target tissue.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Artificial neural network model</subject><subject>Elastic Modulus</subject><subject>Electrospun scaffold</subject><subject>Fiber diameter</subject><subject>Gelatin - chemistry</subject><subject>Neural Networks (Computer)</subject><subject>Orientation</subject><subject>Polyesters - chemistry</subject><subject>Polymers - chemistry</subject><subject>Regression Analysis</subject><subject>Sus scrofa</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9v1DAQxS1URP_AN6hQjr0ktR0ndi5IVVWgUqVeytlyxuPirTdebIeq3x4vWzj2NKPRezNvfoScM9oxysbLTWegzD52nLK-o1NH2fCOnDAlVSuHUR3VXgreSjqyY3Ka84bSXjGuPpBjLqgclFInJFyl4p0Hb0Kz4Jr-lvIc01PjYmq20WLwy2NTfmKDweTiYT9cw5qb6OoIoaSYd-vS7GJ4AbNLMdRgccHLx2oofmkyGOdisPkjee9MyPjptZ6RH19vHq6_t3f3326vr-5aEFyVdkKkXHGuRidn4IBjr-ysBiOEBOtU309sAENdP4mRGjtzYwdwjjqr1CigPyMXh701zK8Vc9FbnwFDMAvGNWsmJirFQCdZpeIghfpFTuj0LvmtSS-aUb3nrDf6wFnvOWs66cq52j6_XljnLdr_pn9gq-DLQYD1z98ek87gcQG0PlVk2kb_9oU_i1GTtQ</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Vatankhah, Elham</creator><creator>Semnani, Dariush</creator><creator>Prabhakaran, Molamma P.</creator><creator>Tadayon, Mahdi</creator><creator>Razavi, Shahnaz</creator><creator>Ramakrishna, Seeram</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140201</creationdate><title>Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds</title><author>Vatankhah, Elham ; Semnani, Dariush ; Prabhakaran, Molamma P. ; Tadayon, Mahdi ; Razavi, Shahnaz ; Ramakrishna, Seeram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-9ee0282286f7bc2ce638db85a447cdf833915ca0f39460adb2ad5cff0fd8864c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Artificial neural network model</topic><topic>Elastic Modulus</topic><topic>Electrospun scaffold</topic><topic>Fiber diameter</topic><topic>Gelatin - chemistry</topic><topic>Neural Networks (Computer)</topic><topic>Orientation</topic><topic>Polyesters - chemistry</topic><topic>Polymers - chemistry</topic><topic>Regression Analysis</topic><topic>Sus scrofa</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vatankhah, Elham</creatorcontrib><creatorcontrib>Semnani, Dariush</creatorcontrib><creatorcontrib>Prabhakaran, Molamma P.</creatorcontrib><creatorcontrib>Tadayon, Mahdi</creatorcontrib><creatorcontrib>Razavi, Shahnaz</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vatankhah, Elham</au><au>Semnani, Dariush</au><au>Prabhakaran, Molamma P.</au><au>Tadayon, Mahdi</au><au>Razavi, Shahnaz</au><au>Ramakrishna, Seeram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2014-02-01</date><risdate>2014</risdate><volume>10</volume><issue>2</issue><spage>709</spage><epage>721</epage><pages>709-721</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Scaffolds for tissue engineering (TE) require the consideration of multiple aspects, including polymeric composition and the structure and mechanical properties of the scaffolds, in order to mimic the native extracellular matrix of the tissue. Electrospun fibers are frequently utilized in TE due to their tunable physical, chemical, and mechanical properties and porosity. The mechanical properties of electrospun scaffolds made from specific polymers are highly dependent on the processing parameters, which can therefore be tuned for particular applications. Fiber diameter and orientation along with polymeric composition are the major factors that determine the elastic modulus of electrospun nano- and microfibers. Here we have developed a neural network model to investigate the simultaneous effects of composition, fiber diameter and fiber orientation of electrospun polycaprolactone/gelatin mats on the elastic modulus of the scaffolds under ambient and simulated physiological conditions. The model generated might assist bioengineers to fabricate electrospun scaffolds with defined fiber diameters, orientations and constituents, thereby replicating the mechanical properties of the native target tissue.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>24075888</pmid><doi>10.1016/j.actbio.2013.09.015</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2014-02, Vol.10 (2), p.709-721 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_1490745097 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Algorithms Animals Artificial neural network model Elastic Modulus Electrospun scaffold Fiber diameter Gelatin - chemistry Neural Networks (Computer) Orientation Polyesters - chemistry Polymers - chemistry Regression Analysis Sus scrofa Tissue Engineering - methods Tissue Scaffolds - chemistry |
title | Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T16%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20network%20for%20modeling%20the%20elastic%20modulus%20of%20electrospun%20polycaprolactone/gelatin%20scaffolds&rft.jtitle=Acta%20biomaterialia&rft.au=Vatankhah,%20Elham&rft.date=2014-02-01&rft.volume=10&rft.issue=2&rft.spage=709&rft.epage=721&rft.pages=709-721&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2013.09.015&rft_dat=%3Cproquest_cross%3E1490745097%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490745097&rft_id=info:pmid/24075888&rft_els_id=S1742706113004686&rfr_iscdi=true |