Reversible cyclic deformation mechanism of gold nanowires by twinning–detwinning transition evidenced from in situ TEM
Mechanical response of metal nanowires has recently attracted a lot of interest due to their ultra-high strengths and unique deformation behaviours. Atomistic simulations have predicted that face-centered cubic metal nanowires deform in different modes depending on the orientation between wire axis...
Gespeichert in:
Veröffentlicht in: | Nature communications 2014-01, Vol.5 (1), p.3033-3033, Article 3033 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3033 |
---|---|
container_issue | 1 |
container_start_page | 3033 |
container_title | Nature communications |
container_volume | 5 |
creator | Lee, Subin Im, Jiseong Yoo, Youngdong Bitzek, Erik Kiener, Daniel Richter, Gunther Kim, Bongsoo Oh, Sang Ho |
description | Mechanical response of metal nanowires has recently attracted a lot of interest due to their ultra-high strengths and unique deformation behaviours. Atomistic simulations have predicted that face-centered cubic metal nanowires deform in different modes depending on the orientation between wire axis and loading direction. Here we report, by combination of
in situ
transmission electron microscopy and molecular dynamic simulation, the conditions under which particular deformation mechanisms take place during the uniaxial loading of [110]-oriented Au nanowires. Furthermore, by performing cyclic uniaxial loading, we show reversible plastic deformation by twinning and consecutive detwinning in tension and compression, respectively. Molecular dynamics simulations rationalize the observed behaviours in terms of the orientation-dependent resolved shear stress on the leading and trailing partial dislocations, their potential nucleation sites and energy barriers. This reversible twinning–detwinning process accommodates large strains that can be beneficially utilized in applications requiring high ductility in addition to ultra-high strength.
In situ
studies of deformation in metal nanowires have yielded interesting results. Here, the authors perform cyclic loading on gold nanowires and observe twinning and detwinning phenomena, respectively caused by tensile and compressive loading, and elucidate the underpinning mechanism by molecular dynamics simulations. |
doi_str_mv | 10.1038/ncomms4033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1490728899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3175501451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-841d7358fddcb104fd0f696b73b4a5038bdbde9ea770e80197b69458bedb276b3</originalsourceid><addsrcrecordid>eNplkc9KHTEUxkOxVLl10wcoATei3JpMMjfJUkTbgqVQdD3kz5nbyCTRZEa9O9_BN-yTmPZqFT2bnMP55ftCPoQ-UfKFEiYPok0hFE4Ye4e2GsLpnIqGbbzoN9F2KRekFlNUcv4BbTacKSkk20K3v-AacvFmAGxXdvAWO-hTDnr0KeIA9reOvgScerxMg8NRx3TjMxRsVni88TH6uPxzd-_gacBj1rH4f_fh2juIFhzucwrYR1wXEz47_vERve_1UGD78Zyh85Pjs6Nv89OfX78fHZ7OLW_ZOJecOsFa2TtnDSW8d6RfqIURzHDd1g8wzjhQoIUgIAlVwiwUb6UBZxqxMGyGdte6lzldTVDGLvhiYRh0hDSVjnJFRCOlUhXdeYVepCnH-rpKiZYyJqvjDO2tKZtTKRn67jL7oPOqo6T7G0n3HEmFPz9KTiaA-48-BVCB_TVQ6iouIb_wfCv3AEMemWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1475133850</pqid></control><display><type>article</type><title>Reversible cyclic deformation mechanism of gold nanowires by twinning–detwinning transition evidenced from in situ TEM</title><source>Springer Nature OA Free Journals</source><creator>Lee, Subin ; Im, Jiseong ; Yoo, Youngdong ; Bitzek, Erik ; Kiener, Daniel ; Richter, Gunther ; Kim, Bongsoo ; Oh, Sang Ho</creator><creatorcontrib>Lee, Subin ; Im, Jiseong ; Yoo, Youngdong ; Bitzek, Erik ; Kiener, Daniel ; Richter, Gunther ; Kim, Bongsoo ; Oh, Sang Ho</creatorcontrib><description>Mechanical response of metal nanowires has recently attracted a lot of interest due to their ultra-high strengths and unique deformation behaviours. Atomistic simulations have predicted that face-centered cubic metal nanowires deform in different modes depending on the orientation between wire axis and loading direction. Here we report, by combination of
in situ
transmission electron microscopy and molecular dynamic simulation, the conditions under which particular deformation mechanisms take place during the uniaxial loading of [110]-oriented Au nanowires. Furthermore, by performing cyclic uniaxial loading, we show reversible plastic deformation by twinning and consecutive detwinning in tension and compression, respectively. Molecular dynamics simulations rationalize the observed behaviours in terms of the orientation-dependent resolved shear stress on the leading and trailing partial dislocations, their potential nucleation sites and energy barriers. This reversible twinning–detwinning process accommodates large strains that can be beneficially utilized in applications requiring high ductility in addition to ultra-high strength.
In situ
studies of deformation in metal nanowires have yielded interesting results. Here, the authors perform cyclic loading on gold nanowires and observe twinning and detwinning phenomena, respectively caused by tensile and compressive loading, and elucidate the underpinning mechanism by molecular dynamics simulations.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms4033</identifier><identifier>PMID: 24398783</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1023/303 ; 639/301/1034 ; 639/301/357/1016 ; 639/301/930/328/2082 ; Behavior ; Deformation ; Humanities and Social Sciences ; Materials science ; Molecular beam epitaxy ; multidisciplinary ; Nanowires ; Science ; Science (multidisciplinary) ; Shear stress ; Simulation</subject><ispartof>Nature communications, 2014-01, Vol.5 (1), p.3033-3033, Article 3033</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Jan 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-841d7358fddcb104fd0f696b73b4a5038bdbde9ea770e80197b69458bedb276b3</citedby><cites>FETCH-LOGICAL-c453t-841d7358fddcb104fd0f696b73b4a5038bdbde9ea770e80197b69458bedb276b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms4033$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms4033$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41120,42189,51576</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms4033$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24398783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Subin</creatorcontrib><creatorcontrib>Im, Jiseong</creatorcontrib><creatorcontrib>Yoo, Youngdong</creatorcontrib><creatorcontrib>Bitzek, Erik</creatorcontrib><creatorcontrib>Kiener, Daniel</creatorcontrib><creatorcontrib>Richter, Gunther</creatorcontrib><creatorcontrib>Kim, Bongsoo</creatorcontrib><creatorcontrib>Oh, Sang Ho</creatorcontrib><title>Reversible cyclic deformation mechanism of gold nanowires by twinning–detwinning transition evidenced from in situ TEM</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Mechanical response of metal nanowires has recently attracted a lot of interest due to their ultra-high strengths and unique deformation behaviours. Atomistic simulations have predicted that face-centered cubic metal nanowires deform in different modes depending on the orientation between wire axis and loading direction. Here we report, by combination of
in situ
transmission electron microscopy and molecular dynamic simulation, the conditions under which particular deformation mechanisms take place during the uniaxial loading of [110]-oriented Au nanowires. Furthermore, by performing cyclic uniaxial loading, we show reversible plastic deformation by twinning and consecutive detwinning in tension and compression, respectively. Molecular dynamics simulations rationalize the observed behaviours in terms of the orientation-dependent resolved shear stress on the leading and trailing partial dislocations, their potential nucleation sites and energy barriers. This reversible twinning–detwinning process accommodates large strains that can be beneficially utilized in applications requiring high ductility in addition to ultra-high strength.
In situ
studies of deformation in metal nanowires have yielded interesting results. Here, the authors perform cyclic loading on gold nanowires and observe twinning and detwinning phenomena, respectively caused by tensile and compressive loading, and elucidate the underpinning mechanism by molecular dynamics simulations.</description><subject>639/301/1023/303</subject><subject>639/301/1034</subject><subject>639/301/357/1016</subject><subject>639/301/930/328/2082</subject><subject>Behavior</subject><subject>Deformation</subject><subject>Humanities and Social Sciences</subject><subject>Materials science</subject><subject>Molecular beam epitaxy</subject><subject>multidisciplinary</subject><subject>Nanowires</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Shear stress</subject><subject>Simulation</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkc9KHTEUxkOxVLl10wcoATei3JpMMjfJUkTbgqVQdD3kz5nbyCTRZEa9O9_BN-yTmPZqFT2bnMP55ftCPoQ-UfKFEiYPok0hFE4Ye4e2GsLpnIqGbbzoN9F2KRekFlNUcv4BbTacKSkk20K3v-AacvFmAGxXdvAWO-hTDnr0KeIA9reOvgScerxMg8NRx3TjMxRsVni88TH6uPxzd-_gacBj1rH4f_fh2juIFhzucwrYR1wXEz47_vERve_1UGD78Zyh85Pjs6Nv89OfX78fHZ7OLW_ZOJecOsFa2TtnDSW8d6RfqIURzHDd1g8wzjhQoIUgIAlVwiwUb6UBZxqxMGyGdte6lzldTVDGLvhiYRh0hDSVjnJFRCOlUhXdeYVepCnH-rpKiZYyJqvjDO2tKZtTKRn67jL7oPOqo6T7G0n3HEmFPz9KTiaA-48-BVCB_TVQ6iouIb_wfCv3AEMemWc</recordid><startdate>20140108</startdate><enddate>20140108</enddate><creator>Lee, Subin</creator><creator>Im, Jiseong</creator><creator>Yoo, Youngdong</creator><creator>Bitzek, Erik</creator><creator>Kiener, Daniel</creator><creator>Richter, Gunther</creator><creator>Kim, Bongsoo</creator><creator>Oh, Sang Ho</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20140108</creationdate><title>Reversible cyclic deformation mechanism of gold nanowires by twinning–detwinning transition evidenced from in situ TEM</title><author>Lee, Subin ; Im, Jiseong ; Yoo, Youngdong ; Bitzek, Erik ; Kiener, Daniel ; Richter, Gunther ; Kim, Bongsoo ; Oh, Sang Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-841d7358fddcb104fd0f696b73b4a5038bdbde9ea770e80197b69458bedb276b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/1023/303</topic><topic>639/301/1034</topic><topic>639/301/357/1016</topic><topic>639/301/930/328/2082</topic><topic>Behavior</topic><topic>Deformation</topic><topic>Humanities and Social Sciences</topic><topic>Materials science</topic><topic>Molecular beam epitaxy</topic><topic>multidisciplinary</topic><topic>Nanowires</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Shear stress</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Subin</creatorcontrib><creatorcontrib>Im, Jiseong</creatorcontrib><creatorcontrib>Yoo, Youngdong</creatorcontrib><creatorcontrib>Bitzek, Erik</creatorcontrib><creatorcontrib>Kiener, Daniel</creatorcontrib><creatorcontrib>Richter, Gunther</creatorcontrib><creatorcontrib>Kim, Bongsoo</creatorcontrib><creatorcontrib>Oh, Sang Ho</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Subin</au><au>Im, Jiseong</au><au>Yoo, Youngdong</au><au>Bitzek, Erik</au><au>Kiener, Daniel</au><au>Richter, Gunther</au><au>Kim, Bongsoo</au><au>Oh, Sang Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversible cyclic deformation mechanism of gold nanowires by twinning–detwinning transition evidenced from in situ TEM</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-01-08</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>3033</spage><epage>3033</epage><pages>3033-3033</pages><artnum>3033</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Mechanical response of metal nanowires has recently attracted a lot of interest due to their ultra-high strengths and unique deformation behaviours. Atomistic simulations have predicted that face-centered cubic metal nanowires deform in different modes depending on the orientation between wire axis and loading direction. Here we report, by combination of
in situ
transmission electron microscopy and molecular dynamic simulation, the conditions under which particular deformation mechanisms take place during the uniaxial loading of [110]-oriented Au nanowires. Furthermore, by performing cyclic uniaxial loading, we show reversible plastic deformation by twinning and consecutive detwinning in tension and compression, respectively. Molecular dynamics simulations rationalize the observed behaviours in terms of the orientation-dependent resolved shear stress on the leading and trailing partial dislocations, their potential nucleation sites and energy barriers. This reversible twinning–detwinning process accommodates large strains that can be beneficially utilized in applications requiring high ductility in addition to ultra-high strength.
In situ
studies of deformation in metal nanowires have yielded interesting results. Here, the authors perform cyclic loading on gold nanowires and observe twinning and detwinning phenomena, respectively caused by tensile and compressive loading, and elucidate the underpinning mechanism by molecular dynamics simulations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24398783</pmid><doi>10.1038/ncomms4033</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2014-01, Vol.5 (1), p.3033-3033, Article 3033 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_miscellaneous_1490728899 |
source | Springer Nature OA Free Journals |
subjects | 639/301/1023/303 639/301/1034 639/301/357/1016 639/301/930/328/2082 Behavior Deformation Humanities and Social Sciences Materials science Molecular beam epitaxy multidisciplinary Nanowires Science Science (multidisciplinary) Shear stress Simulation |
title | Reversible cyclic deformation mechanism of gold nanowires by twinning–detwinning transition evidenced from in situ TEM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversible%20cyclic%20deformation%20mechanism%20of%20gold%20nanowires%20by%20twinning%E2%80%93detwinning%20transition%20evidenced%20from%20in%20situ%20TEM&rft.jtitle=Nature%20communications&rft.au=Lee,%20Subin&rft.date=2014-01-08&rft.volume=5&rft.issue=1&rft.spage=3033&rft.epage=3033&rft.pages=3033-3033&rft.artnum=3033&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms4033&rft_dat=%3Cproquest_C6C%3E3175501451%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1475133850&rft_id=info:pmid/24398783&rfr_iscdi=true |