Reversible cyclic deformation mechanism of gold nanowires by twinning–detwinning transition evidenced from in situ TEM

Mechanical response of metal nanowires has recently attracted a lot of interest due to their ultra-high strengths and unique deformation behaviours. Atomistic simulations have predicted that face-centered cubic metal nanowires deform in different modes depending on the orientation between wire axis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2014-01, Vol.5 (1), p.3033-3033, Article 3033
Hauptverfasser: Lee, Subin, Im, Jiseong, Yoo, Youngdong, Bitzek, Erik, Kiener, Daniel, Richter, Gunther, Kim, Bongsoo, Oh, Sang Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3033
container_issue 1
container_start_page 3033
container_title Nature communications
container_volume 5
creator Lee, Subin
Im, Jiseong
Yoo, Youngdong
Bitzek, Erik
Kiener, Daniel
Richter, Gunther
Kim, Bongsoo
Oh, Sang Ho
description Mechanical response of metal nanowires has recently attracted a lot of interest due to their ultra-high strengths and unique deformation behaviours. Atomistic simulations have predicted that face-centered cubic metal nanowires deform in different modes depending on the orientation between wire axis and loading direction. Here we report, by combination of in situ transmission electron microscopy and molecular dynamic simulation, the conditions under which particular deformation mechanisms take place during the uniaxial loading of [110]-oriented Au nanowires. Furthermore, by performing cyclic uniaxial loading, we show reversible plastic deformation by twinning and consecutive detwinning in tension and compression, respectively. Molecular dynamics simulations rationalize the observed behaviours in terms of the orientation-dependent resolved shear stress on the leading and trailing partial dislocations, their potential nucleation sites and energy barriers. This reversible twinning–detwinning process accommodates large strains that can be beneficially utilized in applications requiring high ductility in addition to ultra-high strength. In situ studies of deformation in metal nanowires have yielded interesting results. Here, the authors perform cyclic loading on gold nanowires and observe twinning and detwinning phenomena, respectively caused by tensile and compressive loading, and elucidate the underpinning mechanism by molecular dynamics simulations.
doi_str_mv 10.1038/ncomms4033
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1490728899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3175501451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-841d7358fddcb104fd0f696b73b4a5038bdbde9ea770e80197b69458bedb276b3</originalsourceid><addsrcrecordid>eNplkc9KHTEUxkOxVLl10wcoATei3JpMMjfJUkTbgqVQdD3kz5nbyCTRZEa9O9_BN-yTmPZqFT2bnMP55ftCPoQ-UfKFEiYPok0hFE4Ye4e2GsLpnIqGbbzoN9F2KRekFlNUcv4BbTacKSkk20K3v-AacvFmAGxXdvAWO-hTDnr0KeIA9reOvgScerxMg8NRx3TjMxRsVni88TH6uPxzd-_gacBj1rH4f_fh2juIFhzucwrYR1wXEz47_vERve_1UGD78Zyh85Pjs6Nv89OfX78fHZ7OLW_ZOJecOsFa2TtnDSW8d6RfqIURzHDd1g8wzjhQoIUgIAlVwiwUb6UBZxqxMGyGdte6lzldTVDGLvhiYRh0hDSVjnJFRCOlUhXdeYVepCnH-rpKiZYyJqvjDO2tKZtTKRn67jL7oPOqo6T7G0n3HEmFPz9KTiaA-48-BVCB_TVQ6iouIb_wfCv3AEMemWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1475133850</pqid></control><display><type>article</type><title>Reversible cyclic deformation mechanism of gold nanowires by twinning–detwinning transition evidenced from in situ TEM</title><source>Springer Nature OA Free Journals</source><creator>Lee, Subin ; Im, Jiseong ; Yoo, Youngdong ; Bitzek, Erik ; Kiener, Daniel ; Richter, Gunther ; Kim, Bongsoo ; Oh, Sang Ho</creator><creatorcontrib>Lee, Subin ; Im, Jiseong ; Yoo, Youngdong ; Bitzek, Erik ; Kiener, Daniel ; Richter, Gunther ; Kim, Bongsoo ; Oh, Sang Ho</creatorcontrib><description>Mechanical response of metal nanowires has recently attracted a lot of interest due to their ultra-high strengths and unique deformation behaviours. Atomistic simulations have predicted that face-centered cubic metal nanowires deform in different modes depending on the orientation between wire axis and loading direction. Here we report, by combination of in situ transmission electron microscopy and molecular dynamic simulation, the conditions under which particular deformation mechanisms take place during the uniaxial loading of [110]-oriented Au nanowires. Furthermore, by performing cyclic uniaxial loading, we show reversible plastic deformation by twinning and consecutive detwinning in tension and compression, respectively. Molecular dynamics simulations rationalize the observed behaviours in terms of the orientation-dependent resolved shear stress on the leading and trailing partial dislocations, their potential nucleation sites and energy barriers. This reversible twinning–detwinning process accommodates large strains that can be beneficially utilized in applications requiring high ductility in addition to ultra-high strength. In situ studies of deformation in metal nanowires have yielded interesting results. Here, the authors perform cyclic loading on gold nanowires and observe twinning and detwinning phenomena, respectively caused by tensile and compressive loading, and elucidate the underpinning mechanism by molecular dynamics simulations.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms4033</identifier><identifier>PMID: 24398783</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1023/303 ; 639/301/1034 ; 639/301/357/1016 ; 639/301/930/328/2082 ; Behavior ; Deformation ; Humanities and Social Sciences ; Materials science ; Molecular beam epitaxy ; multidisciplinary ; Nanowires ; Science ; Science (multidisciplinary) ; Shear stress ; Simulation</subject><ispartof>Nature communications, 2014-01, Vol.5 (1), p.3033-3033, Article 3033</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Jan 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-841d7358fddcb104fd0f696b73b4a5038bdbde9ea770e80197b69458bedb276b3</citedby><cites>FETCH-LOGICAL-c453t-841d7358fddcb104fd0f696b73b4a5038bdbde9ea770e80197b69458bedb276b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms4033$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms4033$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41120,42189,51576</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms4033$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24398783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Subin</creatorcontrib><creatorcontrib>Im, Jiseong</creatorcontrib><creatorcontrib>Yoo, Youngdong</creatorcontrib><creatorcontrib>Bitzek, Erik</creatorcontrib><creatorcontrib>Kiener, Daniel</creatorcontrib><creatorcontrib>Richter, Gunther</creatorcontrib><creatorcontrib>Kim, Bongsoo</creatorcontrib><creatorcontrib>Oh, Sang Ho</creatorcontrib><title>Reversible cyclic deformation mechanism of gold nanowires by twinning–detwinning transition evidenced from in situ TEM</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Mechanical response of metal nanowires has recently attracted a lot of interest due to their ultra-high strengths and unique deformation behaviours. Atomistic simulations have predicted that face-centered cubic metal nanowires deform in different modes depending on the orientation between wire axis and loading direction. Here we report, by combination of in situ transmission electron microscopy and molecular dynamic simulation, the conditions under which particular deformation mechanisms take place during the uniaxial loading of [110]-oriented Au nanowires. Furthermore, by performing cyclic uniaxial loading, we show reversible plastic deformation by twinning and consecutive detwinning in tension and compression, respectively. Molecular dynamics simulations rationalize the observed behaviours in terms of the orientation-dependent resolved shear stress on the leading and trailing partial dislocations, their potential nucleation sites and energy barriers. This reversible twinning–detwinning process accommodates large strains that can be beneficially utilized in applications requiring high ductility in addition to ultra-high strength. In situ studies of deformation in metal nanowires have yielded interesting results. Here, the authors perform cyclic loading on gold nanowires and observe twinning and detwinning phenomena, respectively caused by tensile and compressive loading, and elucidate the underpinning mechanism by molecular dynamics simulations.</description><subject>639/301/1023/303</subject><subject>639/301/1034</subject><subject>639/301/357/1016</subject><subject>639/301/930/328/2082</subject><subject>Behavior</subject><subject>Deformation</subject><subject>Humanities and Social Sciences</subject><subject>Materials science</subject><subject>Molecular beam epitaxy</subject><subject>multidisciplinary</subject><subject>Nanowires</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Shear stress</subject><subject>Simulation</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkc9KHTEUxkOxVLl10wcoATei3JpMMjfJUkTbgqVQdD3kz5nbyCTRZEa9O9_BN-yTmPZqFT2bnMP55ftCPoQ-UfKFEiYPok0hFE4Ye4e2GsLpnIqGbbzoN9F2KRekFlNUcv4BbTacKSkk20K3v-AacvFmAGxXdvAWO-hTDnr0KeIA9reOvgScerxMg8NRx3TjMxRsVni88TH6uPxzd-_gacBj1rH4f_fh2juIFhzucwrYR1wXEz47_vERve_1UGD78Zyh85Pjs6Nv89OfX78fHZ7OLW_ZOJecOsFa2TtnDSW8d6RfqIURzHDd1g8wzjhQoIUgIAlVwiwUb6UBZxqxMGyGdte6lzldTVDGLvhiYRh0hDSVjnJFRCOlUhXdeYVepCnH-rpKiZYyJqvjDO2tKZtTKRn67jL7oPOqo6T7G0n3HEmFPz9KTiaA-48-BVCB_TVQ6iouIb_wfCv3AEMemWc</recordid><startdate>20140108</startdate><enddate>20140108</enddate><creator>Lee, Subin</creator><creator>Im, Jiseong</creator><creator>Yoo, Youngdong</creator><creator>Bitzek, Erik</creator><creator>Kiener, Daniel</creator><creator>Richter, Gunther</creator><creator>Kim, Bongsoo</creator><creator>Oh, Sang Ho</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20140108</creationdate><title>Reversible cyclic deformation mechanism of gold nanowires by twinning–detwinning transition evidenced from in situ TEM</title><author>Lee, Subin ; Im, Jiseong ; Yoo, Youngdong ; Bitzek, Erik ; Kiener, Daniel ; Richter, Gunther ; Kim, Bongsoo ; Oh, Sang Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-841d7358fddcb104fd0f696b73b4a5038bdbde9ea770e80197b69458bedb276b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/1023/303</topic><topic>639/301/1034</topic><topic>639/301/357/1016</topic><topic>639/301/930/328/2082</topic><topic>Behavior</topic><topic>Deformation</topic><topic>Humanities and Social Sciences</topic><topic>Materials science</topic><topic>Molecular beam epitaxy</topic><topic>multidisciplinary</topic><topic>Nanowires</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Shear stress</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Subin</creatorcontrib><creatorcontrib>Im, Jiseong</creatorcontrib><creatorcontrib>Yoo, Youngdong</creatorcontrib><creatorcontrib>Bitzek, Erik</creatorcontrib><creatorcontrib>Kiener, Daniel</creatorcontrib><creatorcontrib>Richter, Gunther</creatorcontrib><creatorcontrib>Kim, Bongsoo</creatorcontrib><creatorcontrib>Oh, Sang Ho</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Subin</au><au>Im, Jiseong</au><au>Yoo, Youngdong</au><au>Bitzek, Erik</au><au>Kiener, Daniel</au><au>Richter, Gunther</au><au>Kim, Bongsoo</au><au>Oh, Sang Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversible cyclic deformation mechanism of gold nanowires by twinning–detwinning transition evidenced from in situ TEM</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-01-08</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>3033</spage><epage>3033</epage><pages>3033-3033</pages><artnum>3033</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Mechanical response of metal nanowires has recently attracted a lot of interest due to their ultra-high strengths and unique deformation behaviours. Atomistic simulations have predicted that face-centered cubic metal nanowires deform in different modes depending on the orientation between wire axis and loading direction. Here we report, by combination of in situ transmission electron microscopy and molecular dynamic simulation, the conditions under which particular deformation mechanisms take place during the uniaxial loading of [110]-oriented Au nanowires. Furthermore, by performing cyclic uniaxial loading, we show reversible plastic deformation by twinning and consecutive detwinning in tension and compression, respectively. Molecular dynamics simulations rationalize the observed behaviours in terms of the orientation-dependent resolved shear stress on the leading and trailing partial dislocations, their potential nucleation sites and energy barriers. This reversible twinning–detwinning process accommodates large strains that can be beneficially utilized in applications requiring high ductility in addition to ultra-high strength. In situ studies of deformation in metal nanowires have yielded interesting results. Here, the authors perform cyclic loading on gold nanowires and observe twinning and detwinning phenomena, respectively caused by tensile and compressive loading, and elucidate the underpinning mechanism by molecular dynamics simulations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24398783</pmid><doi>10.1038/ncomms4033</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-1723
ispartof Nature communications, 2014-01, Vol.5 (1), p.3033-3033, Article 3033
issn 2041-1723
2041-1723
language eng
recordid cdi_proquest_miscellaneous_1490728899
source Springer Nature OA Free Journals
subjects 639/301/1023/303
639/301/1034
639/301/357/1016
639/301/930/328/2082
Behavior
Deformation
Humanities and Social Sciences
Materials science
Molecular beam epitaxy
multidisciplinary
Nanowires
Science
Science (multidisciplinary)
Shear stress
Simulation
title Reversible cyclic deformation mechanism of gold nanowires by twinning–detwinning transition evidenced from in situ TEM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversible%20cyclic%20deformation%20mechanism%20of%20gold%20nanowires%20by%20twinning%E2%80%93detwinning%20transition%20evidenced%20from%20in%20situ%20TEM&rft.jtitle=Nature%20communications&rft.au=Lee,%20Subin&rft.date=2014-01-08&rft.volume=5&rft.issue=1&rft.spage=3033&rft.epage=3033&rft.pages=3033-3033&rft.artnum=3033&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms4033&rft_dat=%3Cproquest_C6C%3E3175501451%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1475133850&rft_id=info:pmid/24398783&rfr_iscdi=true