Creation of nanoporous TiO2 surface onto polyetheretherketone for effective immobilization and delivery of bone morphogenetic protein
This study evaluated the utility of the creation of a nanoporous TiO2 surface to enhance the in vitro biocompatibility and in vivo osseoconductivity of polyetheretherketone (PEEK) implants by providing favorable sites for the effective immobilization of bone morphogenetic protein‐2 (BMP‐2). A unifor...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2014-03, Vol.102 (3), p.793-800 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 800 |
---|---|
container_issue | 3 |
container_start_page | 793 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 102 |
creator | Han, Cheol-Min Jang, Tae-Sik Kim, Hyoun-Ee Koh, Young-Hag |
description | This study evaluated the utility of the creation of a nanoporous TiO2 surface to enhance the in vitro biocompatibility and in vivo osseoconductivity of polyetheretherketone (PEEK) implants by providing favorable sites for the effective immobilization of bone morphogenetic protein‐2 (BMP‐2). A uniform nanoporous TiO2 layer with a pore diameter of ∼70 nm was successfully created by anodizing a Ti film, which had been deposited onto a PEEK substrate via electron beam (e‐beam) evaporation technique. This nanoporous, hydrophilic TiO2 surface enabled the efficient immobilization of BMP‐2, resulting in a remarkable enhancement in in vitro biocompatibility that was assessed in terms of cell attachment, proliferation, and differentiation. The in vivo animal tests also confirmed that the nanoporous TiO2 surface immobilized with BMP‐2 could significantly enhance the osseoconductivity of PEEK implants. The BMP‐immobilized PEEK implant with the nanoporous TiO2 surface showed much higher bone‐to‐implant contact (BIC) ratio (60%) than the bare PEEK (30%), PEEK with the nanoporous TiO2 surface (50%) and even BMP‐immobilized PEEK without the nanoporous TiO2 surface (32%). © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 793–800, 2014. |
doi_str_mv | 10.1002/jbm.a.34748 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1490722250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1490722250</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3878-ab3b02b098500f1492a2104eb1f807ab902d5bc9eb322901b8b35511ff8321e23</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxSMEoqVw4o4sISQuWfwRJ_axXUGhlPZSPsTFsrPj1tvEDnYCLHf-b5zdpUhc7JHm954984riKcELgjF9tTb9Qi9Y1VTiXnFIOKdlJWt-f64rWTIq64PiUUrrDNeY04fFAWVcyKw4LH4vI-jRBY-CRV77MIQYpoSu3CVFaYpWt4CCHwMaQreB8Qbi9riFMXhANkQE1kI7uu-AXN8H4zr3a-eo_QqtoMuduJntzazoQxxuwjV4GF2LhhhGcP5x8cDqLsGT_X1UfHzz-mr5tjy_PH23PD4vr5loRKkNM5gaLAXH2JJKUk0JrsAQK3CjjcR0xU0rwTBKJSZGGMY5IdYKRglQdlS83Pnmd79NkEbVu9RC12kPeWqVLXFDKeU4o8__Q9dhij7_TpGmrgWraiwz9WxPTaaHlRqi63XcqL8LzsCLPaBTqzsbtW9d-scJyjM1G9Ed98N1sLnrE6zmjFXOWGm1zVidnXw43lZZVO5ELo3w806k462qG9Zw9fniVC0_0eri65cz9Z79ARrvqhE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766834609</pqid></control><display><type>article</type><title>Creation of nanoporous TiO2 surface onto polyetheretherketone for effective immobilization and delivery of bone morphogenetic protein</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Han, Cheol-Min ; Jang, Tae-Sik ; Kim, Hyoun-Ee ; Koh, Young-Hag</creator><creatorcontrib>Han, Cheol-Min ; Jang, Tae-Sik ; Kim, Hyoun-Ee ; Koh, Young-Hag</creatorcontrib><description>This study evaluated the utility of the creation of a nanoporous TiO2 surface to enhance the in vitro biocompatibility and in vivo osseoconductivity of polyetheretherketone (PEEK) implants by providing favorable sites for the effective immobilization of bone morphogenetic protein‐2 (BMP‐2). A uniform nanoporous TiO2 layer with a pore diameter of ∼70 nm was successfully created by anodizing a Ti film, which had been deposited onto a PEEK substrate via electron beam (e‐beam) evaporation technique. This nanoporous, hydrophilic TiO2 surface enabled the efficient immobilization of BMP‐2, resulting in a remarkable enhancement in in vitro biocompatibility that was assessed in terms of cell attachment, proliferation, and differentiation. The in vivo animal tests also confirmed that the nanoporous TiO2 surface immobilized with BMP‐2 could significantly enhance the osseoconductivity of PEEK implants. The BMP‐immobilized PEEK implant with the nanoporous TiO2 surface showed much higher bone‐to‐implant contact (BIC) ratio (60%) than the bare PEEK (30%), PEEK with the nanoporous TiO2 surface (50%) and even BMP‐immobilized PEEK without the nanoporous TiO2 surface (32%). © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 793–800, 2014.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.34748</identifier><identifier>PMID: 23589347</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>3T3 Cells ; Animals ; biocompatibility ; Biological and medical sciences ; BMP-2 ; Bone Morphogenetic Protein 2 - administration & dosage ; Bone Morphogenetic Protein 2 - pharmacology ; Bone Substitutes - chemistry ; Cell Adhesion - drug effects ; Cell Differentiation - drug effects ; Cell Proliferation - drug effects ; Coated Materials, Biocompatible - chemistry ; Cross-disciplinary physics: materials science; rheology ; e-beam coatings ; Exact sciences and technology ; Ketones - chemistry ; Male ; Materials science ; Medical sciences ; Mice ; Nanoscale materials and structures: fabrication and characterization ; Nanotubes ; PEEK ; Physics ; Polyethylene Glycols - chemistry ; Porosity ; Prostheses and Implants ; Rabbits ; Surface Properties ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; Tibia - cytology ; Tibia - injuries ; Tibia - ultrastructure ; titania nanotube ; Titanium - chemistry</subject><ispartof>Journal of biomedical materials research. Part A, 2014-03, Vol.102 (3), p.793-800</ispartof><rights>Copyright © 2013 Society of Plastics Engineers</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013 Society of Plastics Engineers.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.34748$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.34748$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28254739$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23589347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Cheol-Min</creatorcontrib><creatorcontrib>Jang, Tae-Sik</creatorcontrib><creatorcontrib>Kim, Hyoun-Ee</creatorcontrib><creatorcontrib>Koh, Young-Hag</creatorcontrib><title>Creation of nanoporous TiO2 surface onto polyetheretherketone for effective immobilization and delivery of bone morphogenetic protein</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>This study evaluated the utility of the creation of a nanoporous TiO2 surface to enhance the in vitro biocompatibility and in vivo osseoconductivity of polyetheretherketone (PEEK) implants by providing favorable sites for the effective immobilization of bone morphogenetic protein‐2 (BMP‐2). A uniform nanoporous TiO2 layer with a pore diameter of ∼70 nm was successfully created by anodizing a Ti film, which had been deposited onto a PEEK substrate via electron beam (e‐beam) evaporation technique. This nanoporous, hydrophilic TiO2 surface enabled the efficient immobilization of BMP‐2, resulting in a remarkable enhancement in in vitro biocompatibility that was assessed in terms of cell attachment, proliferation, and differentiation. The in vivo animal tests also confirmed that the nanoporous TiO2 surface immobilized with BMP‐2 could significantly enhance the osseoconductivity of PEEK implants. The BMP‐immobilized PEEK implant with the nanoporous TiO2 surface showed much higher bone‐to‐implant contact (BIC) ratio (60%) than the bare PEEK (30%), PEEK with the nanoporous TiO2 surface (50%) and even BMP‐immobilized PEEK without the nanoporous TiO2 surface (32%). © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 793–800, 2014.</description><subject>3T3 Cells</subject><subject>Animals</subject><subject>biocompatibility</subject><subject>Biological and medical sciences</subject><subject>BMP-2</subject><subject>Bone Morphogenetic Protein 2 - administration & dosage</subject><subject>Bone Morphogenetic Protein 2 - pharmacology</subject><subject>Bone Substitutes - chemistry</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>e-beam coatings</subject><subject>Exact sciences and technology</subject><subject>Ketones - chemistry</subject><subject>Male</subject><subject>Materials science</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotubes</subject><subject>PEEK</subject><subject>Physics</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Porosity</subject><subject>Prostheses and Implants</subject><subject>Rabbits</subject><subject>Surface Properties</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Tibia - cytology</subject><subject>Tibia - injuries</subject><subject>Tibia - ultrastructure</subject><subject>titania nanotube</subject><subject>Titanium - chemistry</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxSMEoqVw4o4sISQuWfwRJ_axXUGhlPZSPsTFsrPj1tvEDnYCLHf-b5zdpUhc7JHm954984riKcELgjF9tTb9Qi9Y1VTiXnFIOKdlJWt-f64rWTIq64PiUUrrDNeY04fFAWVcyKw4LH4vI-jRBY-CRV77MIQYpoSu3CVFaYpWt4CCHwMaQreB8Qbi9riFMXhANkQE1kI7uu-AXN8H4zr3a-eo_QqtoMuduJntzazoQxxuwjV4GF2LhhhGcP5x8cDqLsGT_X1UfHzz-mr5tjy_PH23PD4vr5loRKkNM5gaLAXH2JJKUk0JrsAQK3CjjcR0xU0rwTBKJSZGGMY5IdYKRglQdlS83Pnmd79NkEbVu9RC12kPeWqVLXFDKeU4o8__Q9dhij7_TpGmrgWraiwz9WxPTaaHlRqi63XcqL8LzsCLPaBTqzsbtW9d-scJyjM1G9Ed98N1sLnrE6zmjFXOWGm1zVidnXw43lZZVO5ELo3w806k462qG9Zw9fniVC0_0eri65cz9Z79ARrvqhE</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Han, Cheol-Min</creator><creator>Jang, Tae-Sik</creator><creator>Kim, Hyoun-Ee</creator><creator>Koh, Young-Hag</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201403</creationdate><title>Creation of nanoporous TiO2 surface onto polyetheretherketone for effective immobilization and delivery of bone morphogenetic protein</title><author>Han, Cheol-Min ; Jang, Tae-Sik ; Kim, Hyoun-Ee ; Koh, Young-Hag</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3878-ab3b02b098500f1492a2104eb1f807ab902d5bc9eb322901b8b35511ff8321e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>3T3 Cells</topic><topic>Animals</topic><topic>biocompatibility</topic><topic>Biological and medical sciences</topic><topic>BMP-2</topic><topic>Bone Morphogenetic Protein 2 - administration & dosage</topic><topic>Bone Morphogenetic Protein 2 - pharmacology</topic><topic>Bone Substitutes - chemistry</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>e-beam coatings</topic><topic>Exact sciences and technology</topic><topic>Ketones - chemistry</topic><topic>Male</topic><topic>Materials science</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotubes</topic><topic>PEEK</topic><topic>Physics</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Porosity</topic><topic>Prostheses and Implants</topic><topic>Rabbits</topic><topic>Surface Properties</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Tibia - cytology</topic><topic>Tibia - injuries</topic><topic>Tibia - ultrastructure</topic><topic>titania nanotube</topic><topic>Titanium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Cheol-Min</creatorcontrib><creatorcontrib>Jang, Tae-Sik</creatorcontrib><creatorcontrib>Kim, Hyoun-Ee</creatorcontrib><creatorcontrib>Koh, Young-Hag</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Cheol-Min</au><au>Jang, Tae-Sik</au><au>Kim, Hyoun-Ee</au><au>Koh, Young-Hag</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creation of nanoporous TiO2 surface onto polyetheretherketone for effective immobilization and delivery of bone morphogenetic protein</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2014-03</date><risdate>2014</risdate><volume>102</volume><issue>3</issue><spage>793</spage><epage>800</epage><pages>793-800</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>This study evaluated the utility of the creation of a nanoporous TiO2 surface to enhance the in vitro biocompatibility and in vivo osseoconductivity of polyetheretherketone (PEEK) implants by providing favorable sites for the effective immobilization of bone morphogenetic protein‐2 (BMP‐2). A uniform nanoporous TiO2 layer with a pore diameter of ∼70 nm was successfully created by anodizing a Ti film, which had been deposited onto a PEEK substrate via electron beam (e‐beam) evaporation technique. This nanoporous, hydrophilic TiO2 surface enabled the efficient immobilization of BMP‐2, resulting in a remarkable enhancement in in vitro biocompatibility that was assessed in terms of cell attachment, proliferation, and differentiation. The in vivo animal tests also confirmed that the nanoporous TiO2 surface immobilized with BMP‐2 could significantly enhance the osseoconductivity of PEEK implants. The BMP‐immobilized PEEK implant with the nanoporous TiO2 surface showed much higher bone‐to‐implant contact (BIC) ratio (60%) than the bare PEEK (30%), PEEK with the nanoporous TiO2 surface (50%) and even BMP‐immobilized PEEK without the nanoporous TiO2 surface (32%). © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 793–800, 2014.</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><pmid>23589347</pmid><doi>10.1002/jbm.a.34748</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2014-03, Vol.102 (3), p.793-800 |
issn | 1549-3296 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_1490722250 |
source | MEDLINE; Access via Wiley Online Library |
subjects | 3T3 Cells Animals biocompatibility Biological and medical sciences BMP-2 Bone Morphogenetic Protein 2 - administration & dosage Bone Morphogenetic Protein 2 - pharmacology Bone Substitutes - chemistry Cell Adhesion - drug effects Cell Differentiation - drug effects Cell Proliferation - drug effects Coated Materials, Biocompatible - chemistry Cross-disciplinary physics: materials science rheology e-beam coatings Exact sciences and technology Ketones - chemistry Male Materials science Medical sciences Mice Nanoscale materials and structures: fabrication and characterization Nanotubes PEEK Physics Polyethylene Glycols - chemistry Porosity Prostheses and Implants Rabbits Surface Properties Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Technology. Biomaterials. Equipments Tibia - cytology Tibia - injuries Tibia - ultrastructure titania nanotube Titanium - chemistry |
title | Creation of nanoporous TiO2 surface onto polyetheretherketone for effective immobilization and delivery of bone morphogenetic protein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A57%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creation%20of%20nanoporous%20TiO2%20surface%20onto%20polyetheretherketone%20for%20effective%20immobilization%20and%20delivery%20of%20bone%20morphogenetic%20protein&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Han,%20Cheol-Min&rft.date=2014-03&rft.volume=102&rft.issue=3&rft.spage=793&rft.epage=800&rft.pages=793-800&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.34748&rft_dat=%3Cproquest_pubme%3E1490722250%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766834609&rft_id=info:pmid/23589347&rfr_iscdi=true |