Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference
Ocean acidification is one of the most pressing environmental concerns of our time, and not surprisingly, we have seen a recent explosion of research into the physiological impacts and ecological consequences of changes in ocean chemistry. We are gaining considerable insights from this work, but fur...
Gespeichert in:
Veröffentlicht in: | Global change biology 2014-02, Vol.20 (2), p.515-522 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 522 |
---|---|
container_issue | 2 |
container_start_page | 515 |
container_title | Global change biology |
container_volume | 20 |
creator | Chivers, Douglas P. McCormick, Mark I. Nilsson, Göran E. Munday, Philip L. Watson, Sue-Ann Meekan, Mark G. Mitchell, Matthew D. Corkill, Katherine C. Ferrari, Maud C. O. |
description | Ocean acidification is one of the most pressing environmental concerns of our time, and not surprisingly, we have seen a recent explosion of research into the physiological impacts and ecological consequences of changes in ocean chemistry. We are gaining considerable insights from this work, but further advances require greater integration across disciplines. Here, we showed that projected near‐future CO2 levels impaired the ability of damselfish to learn the identity of predators. These effects stem from impaired neurotransmitter function; impaired learning under elevated CO2 was reversed when fish were treated with gabazine, an antagonist of the GABA‐A receptor – a major inhibitory neurotransmitter receptor in the brain of vertebrates. The effects of CO2 on learning and the link to neurotransmitter interference were manifested as major differences in survival for fish released into the wild. Lower survival under elevated CO2, as a result of impaired learning, could have a major influence on population recruitment. |
doi_str_mv | 10.1111/gcb.12291 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1490718282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3174404721</sourcerecordid><originalsourceid>FETCH-LOGICAL-i4131-8fc5bc5db9f653164ee72ed8cdb1c1a43a4fb3d502b74c0ee5c356cecb837d793</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhiMEoh_00D9QRUJIXNJ6_JlwgxXdrajaC1WPluNMKpfEWexky_77Ot2lSPgwHs087-jVTJadAjmH9C4ebH0OlFbwJjsEJkVBeSnfzrngBRBgB9lRjI-EEEaJfJ8dUKakEFweZturfm1cwCbv0ATv_EM-tPk6Fcw4hJgbnzrDE4a5ts3jFDZuY7p88k2qYYcbMybx4pZ-yU1uBx_x94Te4jzG4xSGMRgfezeOiXc-xRbDDHzI3rWmi3iy_4-zu8vvPxer4vp2ebX4el04DgyKsrWitqKpq1YKBpIjKopNaZsaLBjODG9r1ghCa8UtQRSWCWnR1iVTjarYcfZ5N3cdhmQtjrp30WLXGY_DFDXwiigoaUkT-vE_9HGYgk_uEqXSTjmUPFFne2qqe2z0OrjehK3-u9QEfNoDJlrTtWkB1sV_XAkKZDU7u9hxT67D7WsfiJ6vqtNV9ctV9XLx7SVJimKncHHEP68KE35pqZgS-v5mqS9_yJVU9yt9w54B4omkZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1474864184</pqid></control><display><type>article</type><title>Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference</title><source>MEDLINE</source><source>Wiley Online Library</source><creator>Chivers, Douglas P. ; McCormick, Mark I. ; Nilsson, Göran E. ; Munday, Philip L. ; Watson, Sue-Ann ; Meekan, Mark G. ; Mitchell, Matthew D. ; Corkill, Katherine C. ; Ferrari, Maud C. O.</creator><creatorcontrib>Chivers, Douglas P. ; McCormick, Mark I. ; Nilsson, Göran E. ; Munday, Philip L. ; Watson, Sue-Ann ; Meekan, Mark G. ; Mitchell, Matthew D. ; Corkill, Katherine C. ; Ferrari, Maud C. O.</creatorcontrib><description>Ocean acidification is one of the most pressing environmental concerns of our time, and not surprisingly, we have seen a recent explosion of research into the physiological impacts and ecological consequences of changes in ocean chemistry. We are gaining considerable insights from this work, but further advances require greater integration across disciplines. Here, we showed that projected near‐future CO2 levels impaired the ability of damselfish to learn the identity of predators. These effects stem from impaired neurotransmitter function; impaired learning under elevated CO2 was reversed when fish were treated with gabazine, an antagonist of the GABA‐A receptor – a major inhibitory neurotransmitter receptor in the brain of vertebrates. The effects of CO2 on learning and the link to neurotransmitter interference were manifested as major differences in survival for fish released into the wild. Lower survival under elevated CO2, as a result of impaired learning, could have a major influence on population recruitment.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.12291</identifier><identifier>PMID: 23765546</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Acidification ; Animal and plant ecology ; Animal populations ; Animal, plant and microbial ecology ; Animals ; Australia ; Biological and medical sciences ; Carbon dioxide ; Carbon Dioxide - pharmacology ; Climatology. Bioclimatology. Climate change ; CO2 ; Coral Reefs ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fish ; Fishes - physiology ; Food Chain ; Fundamental and applied biological sciences. Psychology ; GABA-A Receptor Antagonists - pharmacology ; GABA-A receptors ; General aspects ; global change ; learning ; Learning - drug effects ; Longevity ; Marine ecology ; Meteorology ; neurotransmitter ; Neurotransmitter Agents - antagonists & inhibitors ; Neurotransmitters ; ocean acidification ; Predation ; predator recognition ; Pyridazines - pharmacology ; survival</subject><ispartof>Global change biology, 2014-02, Vol.20 (2), p.515-522</ispartof><rights>2013 John Wiley & Sons Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2013 John Wiley & Sons Ltd.</rights><rights>Copyright © 2014 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.12291$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.12291$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28171699$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23765546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chivers, Douglas P.</creatorcontrib><creatorcontrib>McCormick, Mark I.</creatorcontrib><creatorcontrib>Nilsson, Göran E.</creatorcontrib><creatorcontrib>Munday, Philip L.</creatorcontrib><creatorcontrib>Watson, Sue-Ann</creatorcontrib><creatorcontrib>Meekan, Mark G.</creatorcontrib><creatorcontrib>Mitchell, Matthew D.</creatorcontrib><creatorcontrib>Corkill, Katherine C.</creatorcontrib><creatorcontrib>Ferrari, Maud C. O.</creatorcontrib><title>Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference</title><title>Global change biology</title><addtitle>Glob Change Biol</addtitle><description>Ocean acidification is one of the most pressing environmental concerns of our time, and not surprisingly, we have seen a recent explosion of research into the physiological impacts and ecological consequences of changes in ocean chemistry. We are gaining considerable insights from this work, but further advances require greater integration across disciplines. Here, we showed that projected near‐future CO2 levels impaired the ability of damselfish to learn the identity of predators. These effects stem from impaired neurotransmitter function; impaired learning under elevated CO2 was reversed when fish were treated with gabazine, an antagonist of the GABA‐A receptor – a major inhibitory neurotransmitter receptor in the brain of vertebrates. The effects of CO2 on learning and the link to neurotransmitter interference were manifested as major differences in survival for fish released into the wild. Lower survival under elevated CO2, as a result of impaired learning, could have a major influence on population recruitment.</description><subject>Acidification</subject><subject>Animal and plant ecology</subject><subject>Animal populations</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Australia</subject><subject>Biological and medical sciences</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - pharmacology</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>CO2</subject><subject>Coral Reefs</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fish</subject><subject>Fishes - physiology</subject><subject>Food Chain</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GABA-A Receptor Antagonists - pharmacology</subject><subject>GABA-A receptors</subject><subject>General aspects</subject><subject>global change</subject><subject>learning</subject><subject>Learning - drug effects</subject><subject>Longevity</subject><subject>Marine ecology</subject><subject>Meteorology</subject><subject>neurotransmitter</subject><subject>Neurotransmitter Agents - antagonists & inhibitors</subject><subject>Neurotransmitters</subject><subject>ocean acidification</subject><subject>Predation</subject><subject>predator recognition</subject><subject>Pyridazines - pharmacology</subject><subject>survival</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhiMEoh_00D9QRUJIXNJ6_JlwgxXdrajaC1WPluNMKpfEWexky_77Ot2lSPgwHs087-jVTJadAjmH9C4ebH0OlFbwJjsEJkVBeSnfzrngBRBgB9lRjI-EEEaJfJ8dUKakEFweZturfm1cwCbv0ATv_EM-tPk6Fcw4hJgbnzrDE4a5ts3jFDZuY7p88k2qYYcbMybx4pZ-yU1uBx_x94Te4jzG4xSGMRgfezeOiXc-xRbDDHzI3rWmi3iy_4-zu8vvPxer4vp2ebX4el04DgyKsrWitqKpq1YKBpIjKopNaZsaLBjODG9r1ghCa8UtQRSWCWnR1iVTjarYcfZ5N3cdhmQtjrp30WLXGY_DFDXwiigoaUkT-vE_9HGYgk_uEqXSTjmUPFFne2qqe2z0OrjehK3-u9QEfNoDJlrTtWkB1sV_XAkKZDU7u9hxT67D7WsfiJ6vqtNV9ctV9XLx7SVJimKncHHEP68KE35pqZgS-v5mqS9_yJVU9yt9w54B4omkZw</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Chivers, Douglas P.</creator><creator>McCormick, Mark I.</creator><creator>Nilsson, Göran E.</creator><creator>Munday, Philip L.</creator><creator>Watson, Sue-Ann</creator><creator>Meekan, Mark G.</creator><creator>Mitchell, Matthew D.</creator><creator>Corkill, Katherine C.</creator><creator>Ferrari, Maud C. O.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>201402</creationdate><title>Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference</title><author>Chivers, Douglas P. ; McCormick, Mark I. ; Nilsson, Göran E. ; Munday, Philip L. ; Watson, Sue-Ann ; Meekan, Mark G. ; Mitchell, Matthew D. ; Corkill, Katherine C. ; Ferrari, Maud C. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i4131-8fc5bc5db9f653164ee72ed8cdb1c1a43a4fb3d502b74c0ee5c356cecb837d793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acidification</topic><topic>Animal and plant ecology</topic><topic>Animal populations</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Australia</topic><topic>Biological and medical sciences</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - pharmacology</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>CO2</topic><topic>Coral Reefs</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fish</topic><topic>Fishes - physiology</topic><topic>Food Chain</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GABA-A Receptor Antagonists - pharmacology</topic><topic>GABA-A receptors</topic><topic>General aspects</topic><topic>global change</topic><topic>learning</topic><topic>Learning - drug effects</topic><topic>Longevity</topic><topic>Marine ecology</topic><topic>Meteorology</topic><topic>neurotransmitter</topic><topic>Neurotransmitter Agents - antagonists & inhibitors</topic><topic>Neurotransmitters</topic><topic>ocean acidification</topic><topic>Predation</topic><topic>predator recognition</topic><topic>Pyridazines - pharmacology</topic><topic>survival</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chivers, Douglas P.</creatorcontrib><creatorcontrib>McCormick, Mark I.</creatorcontrib><creatorcontrib>Nilsson, Göran E.</creatorcontrib><creatorcontrib>Munday, Philip L.</creatorcontrib><creatorcontrib>Watson, Sue-Ann</creatorcontrib><creatorcontrib>Meekan, Mark G.</creatorcontrib><creatorcontrib>Mitchell, Matthew D.</creatorcontrib><creatorcontrib>Corkill, Katherine C.</creatorcontrib><creatorcontrib>Ferrari, Maud C. O.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chivers, Douglas P.</au><au>McCormick, Mark I.</au><au>Nilsson, Göran E.</au><au>Munday, Philip L.</au><au>Watson, Sue-Ann</au><au>Meekan, Mark G.</au><au>Mitchell, Matthew D.</au><au>Corkill, Katherine C.</au><au>Ferrari, Maud C. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Change Biol</addtitle><date>2014-02</date><risdate>2014</risdate><volume>20</volume><issue>2</issue><spage>515</spage><epage>522</epage><pages>515-522</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Ocean acidification is one of the most pressing environmental concerns of our time, and not surprisingly, we have seen a recent explosion of research into the physiological impacts and ecological consequences of changes in ocean chemistry. We are gaining considerable insights from this work, but further advances require greater integration across disciplines. Here, we showed that projected near‐future CO2 levels impaired the ability of damselfish to learn the identity of predators. These effects stem from impaired neurotransmitter function; impaired learning under elevated CO2 was reversed when fish were treated with gabazine, an antagonist of the GABA‐A receptor – a major inhibitory neurotransmitter receptor in the brain of vertebrates. The effects of CO2 on learning and the link to neurotransmitter interference were manifested as major differences in survival for fish released into the wild. Lower survival under elevated CO2, as a result of impaired learning, could have a major influence on population recruitment.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>23765546</pmid><doi>10.1111/gcb.12291</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1354-1013 |
ispartof | Global change biology, 2014-02, Vol.20 (2), p.515-522 |
issn | 1354-1013 1365-2486 |
language | eng |
recordid | cdi_proquest_miscellaneous_1490718282 |
source | MEDLINE; Wiley Online Library |
subjects | Acidification Animal and plant ecology Animal populations Animal, plant and microbial ecology Animals Australia Biological and medical sciences Carbon dioxide Carbon Dioxide - pharmacology Climatology. Bioclimatology. Climate change CO2 Coral Reefs Earth, ocean, space Exact sciences and technology External geophysics Fish Fishes - physiology Food Chain Fundamental and applied biological sciences. Psychology GABA-A Receptor Antagonists - pharmacology GABA-A receptors General aspects global change learning Learning - drug effects Longevity Marine ecology Meteorology neurotransmitter Neurotransmitter Agents - antagonists & inhibitors Neurotransmitters ocean acidification Predation predator recognition Pyridazines - pharmacology survival |
title | Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A45%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impaired%20learning%20of%20predators%20and%20lower%20prey%20survival%20under%20elevated%20CO2:%20a%20consequence%20of%20neurotransmitter%20interference&rft.jtitle=Global%20change%20biology&rft.au=Chivers,%20Douglas%20P.&rft.date=2014-02&rft.volume=20&rft.issue=2&rft.spage=515&rft.epage=522&rft.pages=515-522&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.12291&rft_dat=%3Cproquest_pubme%3E3174404721%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1474864184&rft_id=info:pmid/23765546&rfr_iscdi=true |