Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference

Ocean acidification is one of the most pressing environmental concerns of our time, and not surprisingly, we have seen a recent explosion of research into the physiological impacts and ecological consequences of changes in ocean chemistry. We are gaining considerable insights from this work, but fur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2014-02, Vol.20 (2), p.515-522
Hauptverfasser: Chivers, Douglas P., McCormick, Mark I., Nilsson, Göran E., Munday, Philip L., Watson, Sue-Ann, Meekan, Mark G., Mitchell, Matthew D., Corkill, Katherine C., Ferrari, Maud C. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 522
container_issue 2
container_start_page 515
container_title Global change biology
container_volume 20
creator Chivers, Douglas P.
McCormick, Mark I.
Nilsson, Göran E.
Munday, Philip L.
Watson, Sue-Ann
Meekan, Mark G.
Mitchell, Matthew D.
Corkill, Katherine C.
Ferrari, Maud C. O.
description Ocean acidification is one of the most pressing environmental concerns of our time, and not surprisingly, we have seen a recent explosion of research into the physiological impacts and ecological consequences of changes in ocean chemistry. We are gaining considerable insights from this work, but further advances require greater integration across disciplines. Here, we showed that projected near‐future CO2 levels impaired the ability of damselfish to learn the identity of predators. These effects stem from impaired neurotransmitter function; impaired learning under elevated CO2 was reversed when fish were treated with gabazine, an antagonist of the GABA‐A receptor – a major inhibitory neurotransmitter receptor in the brain of vertebrates. The effects of CO2 on learning and the link to neurotransmitter interference were manifested as major differences in survival for fish released into the wild. Lower survival under elevated CO2, as a result of impaired learning, could have a major influence on population recruitment.
doi_str_mv 10.1111/gcb.12291
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1490718282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3174404721</sourcerecordid><originalsourceid>FETCH-LOGICAL-i4131-8fc5bc5db9f653164ee72ed8cdb1c1a43a4fb3d502b74c0ee5c356cecb837d793</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhiMEoh_00D9QRUJIXNJ6_JlwgxXdrajaC1WPluNMKpfEWexky_77Ot2lSPgwHs087-jVTJadAjmH9C4ebH0OlFbwJjsEJkVBeSnfzrngBRBgB9lRjI-EEEaJfJ8dUKakEFweZturfm1cwCbv0ATv_EM-tPk6Fcw4hJgbnzrDE4a5ts3jFDZuY7p88k2qYYcbMybx4pZ-yU1uBx_x94Te4jzG4xSGMRgfezeOiXc-xRbDDHzI3rWmi3iy_4-zu8vvPxer4vp2ebX4el04DgyKsrWitqKpq1YKBpIjKopNaZsaLBjODG9r1ghCa8UtQRSWCWnR1iVTjarYcfZ5N3cdhmQtjrp30WLXGY_DFDXwiigoaUkT-vE_9HGYgk_uEqXSTjmUPFFne2qqe2z0OrjehK3-u9QEfNoDJlrTtWkB1sV_XAkKZDU7u9hxT67D7WsfiJ6vqtNV9ctV9XLx7SVJimKncHHEP68KE35pqZgS-v5mqS9_yJVU9yt9w54B4omkZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1474864184</pqid></control><display><type>article</type><title>Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference</title><source>MEDLINE</source><source>Wiley Online Library</source><creator>Chivers, Douglas P. ; McCormick, Mark I. ; Nilsson, Göran E. ; Munday, Philip L. ; Watson, Sue-Ann ; Meekan, Mark G. ; Mitchell, Matthew D. ; Corkill, Katherine C. ; Ferrari, Maud C. O.</creator><creatorcontrib>Chivers, Douglas P. ; McCormick, Mark I. ; Nilsson, Göran E. ; Munday, Philip L. ; Watson, Sue-Ann ; Meekan, Mark G. ; Mitchell, Matthew D. ; Corkill, Katherine C. ; Ferrari, Maud C. O.</creatorcontrib><description>Ocean acidification is one of the most pressing environmental concerns of our time, and not surprisingly, we have seen a recent explosion of research into the physiological impacts and ecological consequences of changes in ocean chemistry. We are gaining considerable insights from this work, but further advances require greater integration across disciplines. Here, we showed that projected near‐future CO2 levels impaired the ability of damselfish to learn the identity of predators. These effects stem from impaired neurotransmitter function; impaired learning under elevated CO2 was reversed when fish were treated with gabazine, an antagonist of the GABA‐A receptor – a major inhibitory neurotransmitter receptor in the brain of vertebrates. The effects of CO2 on learning and the link to neurotransmitter interference were manifested as major differences in survival for fish released into the wild. Lower survival under elevated CO2, as a result of impaired learning, could have a major influence on population recruitment.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.12291</identifier><identifier>PMID: 23765546</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Acidification ; Animal and plant ecology ; Animal populations ; Animal, plant and microbial ecology ; Animals ; Australia ; Biological and medical sciences ; Carbon dioxide ; Carbon Dioxide - pharmacology ; Climatology. Bioclimatology. Climate change ; CO2 ; Coral Reefs ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fish ; Fishes - physiology ; Food Chain ; Fundamental and applied biological sciences. Psychology ; GABA-A Receptor Antagonists - pharmacology ; GABA-A receptors ; General aspects ; global change ; learning ; Learning - drug effects ; Longevity ; Marine ecology ; Meteorology ; neurotransmitter ; Neurotransmitter Agents - antagonists &amp; inhibitors ; Neurotransmitters ; ocean acidification ; Predation ; predator recognition ; Pyridazines - pharmacology ; survival</subject><ispartof>Global change biology, 2014-02, Vol.20 (2), p.515-522</ispartof><rights>2013 John Wiley &amp; Sons Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2013 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2014 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.12291$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.12291$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28171699$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23765546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chivers, Douglas P.</creatorcontrib><creatorcontrib>McCormick, Mark I.</creatorcontrib><creatorcontrib>Nilsson, Göran E.</creatorcontrib><creatorcontrib>Munday, Philip L.</creatorcontrib><creatorcontrib>Watson, Sue-Ann</creatorcontrib><creatorcontrib>Meekan, Mark G.</creatorcontrib><creatorcontrib>Mitchell, Matthew D.</creatorcontrib><creatorcontrib>Corkill, Katherine C.</creatorcontrib><creatorcontrib>Ferrari, Maud C. O.</creatorcontrib><title>Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference</title><title>Global change biology</title><addtitle>Glob Change Biol</addtitle><description>Ocean acidification is one of the most pressing environmental concerns of our time, and not surprisingly, we have seen a recent explosion of research into the physiological impacts and ecological consequences of changes in ocean chemistry. We are gaining considerable insights from this work, but further advances require greater integration across disciplines. Here, we showed that projected near‐future CO2 levels impaired the ability of damselfish to learn the identity of predators. These effects stem from impaired neurotransmitter function; impaired learning under elevated CO2 was reversed when fish were treated with gabazine, an antagonist of the GABA‐A receptor – a major inhibitory neurotransmitter receptor in the brain of vertebrates. The effects of CO2 on learning and the link to neurotransmitter interference were manifested as major differences in survival for fish released into the wild. Lower survival under elevated CO2, as a result of impaired learning, could have a major influence on population recruitment.</description><subject>Acidification</subject><subject>Animal and plant ecology</subject><subject>Animal populations</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Australia</subject><subject>Biological and medical sciences</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - pharmacology</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>CO2</subject><subject>Coral Reefs</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fish</subject><subject>Fishes - physiology</subject><subject>Food Chain</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GABA-A Receptor Antagonists - pharmacology</subject><subject>GABA-A receptors</subject><subject>General aspects</subject><subject>global change</subject><subject>learning</subject><subject>Learning - drug effects</subject><subject>Longevity</subject><subject>Marine ecology</subject><subject>Meteorology</subject><subject>neurotransmitter</subject><subject>Neurotransmitter Agents - antagonists &amp; inhibitors</subject><subject>Neurotransmitters</subject><subject>ocean acidification</subject><subject>Predation</subject><subject>predator recognition</subject><subject>Pyridazines - pharmacology</subject><subject>survival</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhiMEoh_00D9QRUJIXNJ6_JlwgxXdrajaC1WPluNMKpfEWexky_77Ot2lSPgwHs087-jVTJadAjmH9C4ebH0OlFbwJjsEJkVBeSnfzrngBRBgB9lRjI-EEEaJfJ8dUKakEFweZturfm1cwCbv0ATv_EM-tPk6Fcw4hJgbnzrDE4a5ts3jFDZuY7p88k2qYYcbMybx4pZ-yU1uBx_x94Te4jzG4xSGMRgfezeOiXc-xRbDDHzI3rWmi3iy_4-zu8vvPxer4vp2ebX4el04DgyKsrWitqKpq1YKBpIjKopNaZsaLBjODG9r1ghCa8UtQRSWCWnR1iVTjarYcfZ5N3cdhmQtjrp30WLXGY_DFDXwiigoaUkT-vE_9HGYgk_uEqXSTjmUPFFne2qqe2z0OrjehK3-u9QEfNoDJlrTtWkB1sV_XAkKZDU7u9hxT67D7WsfiJ6vqtNV9ctV9XLx7SVJimKncHHEP68KE35pqZgS-v5mqS9_yJVU9yt9w54B4omkZw</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Chivers, Douglas P.</creator><creator>McCormick, Mark I.</creator><creator>Nilsson, Göran E.</creator><creator>Munday, Philip L.</creator><creator>Watson, Sue-Ann</creator><creator>Meekan, Mark G.</creator><creator>Mitchell, Matthew D.</creator><creator>Corkill, Katherine C.</creator><creator>Ferrari, Maud C. O.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>201402</creationdate><title>Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference</title><author>Chivers, Douglas P. ; McCormick, Mark I. ; Nilsson, Göran E. ; Munday, Philip L. ; Watson, Sue-Ann ; Meekan, Mark G. ; Mitchell, Matthew D. ; Corkill, Katherine C. ; Ferrari, Maud C. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i4131-8fc5bc5db9f653164ee72ed8cdb1c1a43a4fb3d502b74c0ee5c356cecb837d793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acidification</topic><topic>Animal and plant ecology</topic><topic>Animal populations</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Australia</topic><topic>Biological and medical sciences</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - pharmacology</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>CO2</topic><topic>Coral Reefs</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fish</topic><topic>Fishes - physiology</topic><topic>Food Chain</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GABA-A Receptor Antagonists - pharmacology</topic><topic>GABA-A receptors</topic><topic>General aspects</topic><topic>global change</topic><topic>learning</topic><topic>Learning - drug effects</topic><topic>Longevity</topic><topic>Marine ecology</topic><topic>Meteorology</topic><topic>neurotransmitter</topic><topic>Neurotransmitter Agents - antagonists &amp; inhibitors</topic><topic>Neurotransmitters</topic><topic>ocean acidification</topic><topic>Predation</topic><topic>predator recognition</topic><topic>Pyridazines - pharmacology</topic><topic>survival</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chivers, Douglas P.</creatorcontrib><creatorcontrib>McCormick, Mark I.</creatorcontrib><creatorcontrib>Nilsson, Göran E.</creatorcontrib><creatorcontrib>Munday, Philip L.</creatorcontrib><creatorcontrib>Watson, Sue-Ann</creatorcontrib><creatorcontrib>Meekan, Mark G.</creatorcontrib><creatorcontrib>Mitchell, Matthew D.</creatorcontrib><creatorcontrib>Corkill, Katherine C.</creatorcontrib><creatorcontrib>Ferrari, Maud C. O.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chivers, Douglas P.</au><au>McCormick, Mark I.</au><au>Nilsson, Göran E.</au><au>Munday, Philip L.</au><au>Watson, Sue-Ann</au><au>Meekan, Mark G.</au><au>Mitchell, Matthew D.</au><au>Corkill, Katherine C.</au><au>Ferrari, Maud C. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Change Biol</addtitle><date>2014-02</date><risdate>2014</risdate><volume>20</volume><issue>2</issue><spage>515</spage><epage>522</epage><pages>515-522</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Ocean acidification is one of the most pressing environmental concerns of our time, and not surprisingly, we have seen a recent explosion of research into the physiological impacts and ecological consequences of changes in ocean chemistry. We are gaining considerable insights from this work, but further advances require greater integration across disciplines. Here, we showed that projected near‐future CO2 levels impaired the ability of damselfish to learn the identity of predators. These effects stem from impaired neurotransmitter function; impaired learning under elevated CO2 was reversed when fish were treated with gabazine, an antagonist of the GABA‐A receptor – a major inhibitory neurotransmitter receptor in the brain of vertebrates. The effects of CO2 on learning and the link to neurotransmitter interference were manifested as major differences in survival for fish released into the wild. Lower survival under elevated CO2, as a result of impaired learning, could have a major influence on population recruitment.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>23765546</pmid><doi>10.1111/gcb.12291</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2014-02, Vol.20 (2), p.515-522
issn 1354-1013
1365-2486
language eng
recordid cdi_proquest_miscellaneous_1490718282
source MEDLINE; Wiley Online Library
subjects Acidification
Animal and plant ecology
Animal populations
Animal, plant and microbial ecology
Animals
Australia
Biological and medical sciences
Carbon dioxide
Carbon Dioxide - pharmacology
Climatology. Bioclimatology. Climate change
CO2
Coral Reefs
Earth, ocean, space
Exact sciences and technology
External geophysics
Fish
Fishes - physiology
Food Chain
Fundamental and applied biological sciences. Psychology
GABA-A Receptor Antagonists - pharmacology
GABA-A receptors
General aspects
global change
learning
Learning - drug effects
Longevity
Marine ecology
Meteorology
neurotransmitter
Neurotransmitter Agents - antagonists & inhibitors
Neurotransmitters
ocean acidification
Predation
predator recognition
Pyridazines - pharmacology
survival
title Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A45%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impaired%20learning%20of%20predators%20and%20lower%20prey%20survival%20under%20elevated%20CO2:%20a%20consequence%20of%20neurotransmitter%20interference&rft.jtitle=Global%20change%20biology&rft.au=Chivers,%20Douglas%20P.&rft.date=2014-02&rft.volume=20&rft.issue=2&rft.spage=515&rft.epage=522&rft.pages=515-522&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.12291&rft_dat=%3Cproquest_pubme%3E3174404721%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1474864184&rft_id=info:pmid/23765546&rfr_iscdi=true