Evidence for initiation of microtubules in discrete regions of the cell cortex in Azolla root tip cells, and a hypothesis on the development of cortical arrays of microtubules

Complexes of microtubules, vesicles, and (to varying degrees) dense matrix material around the microtubules were seen along the edges of cells in root apices of Azolla pinnata R.Br. (viewing the cells as polyhedra with faces, vertices and edges). They are best developed after cytokinesis has been co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 1978, Vol.143 (2), p.161-179
Hauptverfasser: Gunning, B.E.S, Hardham, A.R, Hughes, J.E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue 2
container_start_page 161
container_title Planta
container_volume 143
creator Gunning, B.E.S
Hardham, A.R
Hughes, J.E
description Complexes of microtubules, vesicles, and (to varying degrees) dense matrix material around the microtubules were seen along the edges of cells in root apices of Azolla pinnata R.Br. (viewing the cells as polyhedra with faces, vertices and edges). They are best developed after cytokinesis has been completed, when the daughter cells are reinstating their interphase arrays of microtubules. They are not confined to edges made by the junction of new cell plates with parental walls, but occur also along older edges. Similar matrices and vesicles are seen amongst phragmoplast microtubules and where pre-prophase bands intersect the edges of cells. It is suggested that the complexes participate in the development of cortical arrays of microtubules. The observations are combined with others, made on pre-prophase bands and on the substructure of cortical arrays lying against the faces of cells, to develop an hypothesis on the development of cortical microtubules, summarised below: Microtubules are nucleated along the edges of cells, at first growing in unspecified orientations and then becoming bridged to the plasma membrane. Parallelism of microtubules in the arrays arises by inter-tubule cross-bridging. Lengths of microtubule are released from, or break off, the nucleating centres and are moved out onto the face of the cell by inter-tubule and tubule-membrane sliding, thus accounting for the presence there of short tubules with randomly placed terminations. The nucleating zones along cell edges might have vectorial properties, and thus be able to control the orientation of the microtubules on the different faces of the cell. Also, localised activation could generate localised arrays, especially pre-prophase bands, in specified sites and planes. Two possible reasons for the spatial restriction of nucleation to cell edges are considered. One is that the geometry of an edge is itself important; the other is that along most cell edges there is a persistent specialised zone, inherited at cytokinesis by the daughter cells when the cell plate bisects the former pre-prophase-band zone.
doi_str_mv 10.1007/bf00387788
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1490703805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23373559</jstor_id><sourcerecordid>23373559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-55e251322b7478e51ca335f91ce78f7c7a9f88f2c503c9cfa9713df3a8ca51d93</originalsourceid><addsrcrecordid>eNpdkUFPFTEUhRujkQe4ca92SYyDbe_0tbNEAmJC4kJZT_o6t1AyMx3bDuH5p_yLdniAiasmPd85ufceQt5ydswZU583jjHQSmn9gqx4DaISrNYvyap8i4o1IPfIfkq3jBVRqddkT9Q107BWK_Ln7M53OFqkLkTqR5-9yT6MNDg6eBtDnjdzj6lItPPJRsxII14XJC1MvkFqse-pDTHj_YKd_A59b2gMIdPspwc5faJm7KihN9spFE_yxT0-uDu8wz5MA455CVxyvDU9NTGabfp_jkPyypk-4ZvH94BcnZ_9PL2oLr9__XZ6cllZaFSupEQhOQixUbXSKLk1ANI13KLSTlllGqe1E1YysI11plEcOgdGWyN518ABOdrlTjH8mjHldijbl03MiGFOLa8bpsrVmSzoxx1apkwpomun6AcTty1n7VJQ--X8qaACv3_MnTcDds_oUyMFeLcDblMO8Z8OoEDKZbAPO92Z0Jrr6FN79UMwDkzU63XNOfwFd5uhPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490703805</pqid></control><display><type>article</type><title>Evidence for initiation of microtubules in discrete regions of the cell cortex in Azolla root tip cells, and a hypothesis on the development of cortical arrays of microtubules</title><source>SpringerNature Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Gunning, B.E.S ; Hardham, A.R ; Hughes, J.E</creator><creatorcontrib>Gunning, B.E.S ; Hardham, A.R ; Hughes, J.E</creatorcontrib><description>Complexes of microtubules, vesicles, and (to varying degrees) dense matrix material around the microtubules were seen along the edges of cells in root apices of Azolla pinnata R.Br. (viewing the cells as polyhedra with faces, vertices and edges). They are best developed after cytokinesis has been completed, when the daughter cells are reinstating their interphase arrays of microtubules. They are not confined to edges made by the junction of new cell plates with parental walls, but occur also along older edges. Similar matrices and vesicles are seen amongst phragmoplast microtubules and where pre-prophase bands intersect the edges of cells. It is suggested that the complexes participate in the development of cortical arrays of microtubules. The observations are combined with others, made on pre-prophase bands and on the substructure of cortical arrays lying against the faces of cells, to develop an hypothesis on the development of cortical microtubules, summarised below: Microtubules are nucleated along the edges of cells, at first growing in unspecified orientations and then becoming bridged to the plasma membrane. Parallelism of microtubules in the arrays arises by inter-tubule cross-bridging. Lengths of microtubule are released from, or break off, the nucleating centres and are moved out onto the face of the cell by inter-tubule and tubule-membrane sliding, thus accounting for the presence there of short tubules with randomly placed terminations. The nucleating zones along cell edges might have vectorial properties, and thus be able to control the orientation of the microtubules on the different faces of the cell. Also, localised activation could generate localised arrays, especially pre-prophase bands, in specified sites and planes. Two possible reasons for the spatial restriction of nucleation to cell edges are considered. One is that the geometry of an edge is itself important; the other is that along most cell edges there is a persistent specialised zone, inherited at cytokinesis by the daughter cells when the cell plate bisects the former pre-prophase-band zone.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/bf00387788</identifier><identifier>PMID: 24408367</identifier><language>eng</language><publisher>Germany: Springer-Verlag</publisher><subject>B lymphocytes ; Cell cycle ; Cell growth ; Cell membranes ; Cell walls ; Daughter cells ; Interphase ; Microtubules ; plant anatomy ; Plant cells ; plant morphology ; Xylem</subject><ispartof>Planta, 1978, Vol.143 (2), p.161-179</ispartof><rights>Springer-Verlag 1978</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-55e251322b7478e51ca335f91ce78f7c7a9f88f2c503c9cfa9713df3a8ca51d93</citedby><cites>FETCH-LOGICAL-c397t-55e251322b7478e51ca335f91ce78f7c7a9f88f2c503c9cfa9713df3a8ca51d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23373559$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23373559$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,782,786,805,4026,27930,27931,27932,58024,58257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24408367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gunning, B.E.S</creatorcontrib><creatorcontrib>Hardham, A.R</creatorcontrib><creatorcontrib>Hughes, J.E</creatorcontrib><title>Evidence for initiation of microtubules in discrete regions of the cell cortex in Azolla root tip cells, and a hypothesis on the development of cortical arrays of microtubules</title><title>Planta</title><addtitle>Planta</addtitle><description>Complexes of microtubules, vesicles, and (to varying degrees) dense matrix material around the microtubules were seen along the edges of cells in root apices of Azolla pinnata R.Br. (viewing the cells as polyhedra with faces, vertices and edges). They are best developed after cytokinesis has been completed, when the daughter cells are reinstating their interphase arrays of microtubules. They are not confined to edges made by the junction of new cell plates with parental walls, but occur also along older edges. Similar matrices and vesicles are seen amongst phragmoplast microtubules and where pre-prophase bands intersect the edges of cells. It is suggested that the complexes participate in the development of cortical arrays of microtubules. The observations are combined with others, made on pre-prophase bands and on the substructure of cortical arrays lying against the faces of cells, to develop an hypothesis on the development of cortical microtubules, summarised below: Microtubules are nucleated along the edges of cells, at first growing in unspecified orientations and then becoming bridged to the plasma membrane. Parallelism of microtubules in the arrays arises by inter-tubule cross-bridging. Lengths of microtubule are released from, or break off, the nucleating centres and are moved out onto the face of the cell by inter-tubule and tubule-membrane sliding, thus accounting for the presence there of short tubules with randomly placed terminations. The nucleating zones along cell edges might have vectorial properties, and thus be able to control the orientation of the microtubules on the different faces of the cell. Also, localised activation could generate localised arrays, especially pre-prophase bands, in specified sites and planes. Two possible reasons for the spatial restriction of nucleation to cell edges are considered. One is that the geometry of an edge is itself important; the other is that along most cell edges there is a persistent specialised zone, inherited at cytokinesis by the daughter cells when the cell plate bisects the former pre-prophase-band zone.</description><subject>B lymphocytes</subject><subject>Cell cycle</subject><subject>Cell growth</subject><subject>Cell membranes</subject><subject>Cell walls</subject><subject>Daughter cells</subject><subject>Interphase</subject><subject>Microtubules</subject><subject>plant anatomy</subject><subject>Plant cells</subject><subject>plant morphology</subject><subject>Xylem</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1978</creationdate><recordtype>article</recordtype><recordid>eNpdkUFPFTEUhRujkQe4ca92SYyDbe_0tbNEAmJC4kJZT_o6t1AyMx3bDuH5p_yLdniAiasmPd85ufceQt5ydswZU583jjHQSmn9gqx4DaISrNYvyap8i4o1IPfIfkq3jBVRqddkT9Q107BWK_Ln7M53OFqkLkTqR5-9yT6MNDg6eBtDnjdzj6lItPPJRsxII14XJC1MvkFqse-pDTHj_YKd_A59b2gMIdPspwc5faJm7KihN9spFE_yxT0-uDu8wz5MA455CVxyvDU9NTGabfp_jkPyypk-4ZvH94BcnZ_9PL2oLr9__XZ6cllZaFSupEQhOQixUbXSKLk1ANI13KLSTlllGqe1E1YysI11plEcOgdGWyN518ABOdrlTjH8mjHldijbl03MiGFOLa8bpsrVmSzoxx1apkwpomun6AcTty1n7VJQ--X8qaACv3_MnTcDds_oUyMFeLcDblMO8Z8OoEDKZbAPO92Z0Jrr6FN79UMwDkzU63XNOfwFd5uhPg</recordid><startdate>1978</startdate><enddate>1978</enddate><creator>Gunning, B.E.S</creator><creator>Hardham, A.R</creator><creator>Hughes, J.E</creator><general>Springer-Verlag</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>1978</creationdate><title>Evidence for initiation of microtubules in discrete regions of the cell cortex in Azolla root tip cells, and a hypothesis on the development of cortical arrays of microtubules</title><author>Gunning, B.E.S ; Hardham, A.R ; Hughes, J.E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-55e251322b7478e51ca335f91ce78f7c7a9f88f2c503c9cfa9713df3a8ca51d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1978</creationdate><topic>B lymphocytes</topic><topic>Cell cycle</topic><topic>Cell growth</topic><topic>Cell membranes</topic><topic>Cell walls</topic><topic>Daughter cells</topic><topic>Interphase</topic><topic>Microtubules</topic><topic>plant anatomy</topic><topic>Plant cells</topic><topic>plant morphology</topic><topic>Xylem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gunning, B.E.S</creatorcontrib><creatorcontrib>Hardham, A.R</creatorcontrib><creatorcontrib>Hughes, J.E</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gunning, B.E.S</au><au>Hardham, A.R</au><au>Hughes, J.E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for initiation of microtubules in discrete regions of the cell cortex in Azolla root tip cells, and a hypothesis on the development of cortical arrays of microtubules</atitle><jtitle>Planta</jtitle><addtitle>Planta</addtitle><date>1978</date><risdate>1978</risdate><volume>143</volume><issue>2</issue><spage>161</spage><epage>179</epage><pages>161-179</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>Complexes of microtubules, vesicles, and (to varying degrees) dense matrix material around the microtubules were seen along the edges of cells in root apices of Azolla pinnata R.Br. (viewing the cells as polyhedra with faces, vertices and edges). They are best developed after cytokinesis has been completed, when the daughter cells are reinstating their interphase arrays of microtubules. They are not confined to edges made by the junction of new cell plates with parental walls, but occur also along older edges. Similar matrices and vesicles are seen amongst phragmoplast microtubules and where pre-prophase bands intersect the edges of cells. It is suggested that the complexes participate in the development of cortical arrays of microtubules. The observations are combined with others, made on pre-prophase bands and on the substructure of cortical arrays lying against the faces of cells, to develop an hypothesis on the development of cortical microtubules, summarised below: Microtubules are nucleated along the edges of cells, at first growing in unspecified orientations and then becoming bridged to the plasma membrane. Parallelism of microtubules in the arrays arises by inter-tubule cross-bridging. Lengths of microtubule are released from, or break off, the nucleating centres and are moved out onto the face of the cell by inter-tubule and tubule-membrane sliding, thus accounting for the presence there of short tubules with randomly placed terminations. The nucleating zones along cell edges might have vectorial properties, and thus be able to control the orientation of the microtubules on the different faces of the cell. Also, localised activation could generate localised arrays, especially pre-prophase bands, in specified sites and planes. Two possible reasons for the spatial restriction of nucleation to cell edges are considered. One is that the geometry of an edge is itself important; the other is that along most cell edges there is a persistent specialised zone, inherited at cytokinesis by the daughter cells when the cell plate bisects the former pre-prophase-band zone.</abstract><cop>Germany</cop><pub>Springer-Verlag</pub><pmid>24408367</pmid><doi>10.1007/bf00387788</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 1978, Vol.143 (2), p.161-179
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_1490703805
source SpringerNature Journals; JSTOR Archive Collection A-Z Listing
subjects B lymphocytes
Cell cycle
Cell growth
Cell membranes
Cell walls
Daughter cells
Interphase
Microtubules
plant anatomy
Plant cells
plant morphology
Xylem
title Evidence for initiation of microtubules in discrete regions of the cell cortex in Azolla root tip cells, and a hypothesis on the development of cortical arrays of microtubules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T17%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20initiation%20of%20microtubules%20in%20discrete%20regions%20of%20the%20cell%20cortex%20in%20Azolla%20root%20tip%20cells,%20and%20a%20hypothesis%20on%20the%20development%20of%20cortical%20arrays%20of%20microtubules&rft.jtitle=Planta&rft.au=Gunning,%20B.E.S&rft.date=1978&rft.volume=143&rft.issue=2&rft.spage=161&rft.epage=179&rft.pages=161-179&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/bf00387788&rft_dat=%3Cjstor_proqu%3E23373559%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490703805&rft_id=info:pmid/24408367&rft_jstor_id=23373559&rfr_iscdi=true